Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Microbes Infect ; 26(4): 105300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224943

RESUMEN

Mycobacterium leprae infects skin and peripheral nerves causing a broad of clinical forms. MicroRNAs (miRNAs) control immune mechanisms such as apoptosis, autophagy as well as to target genes leading to abnormal proliferation, metastasis, and invasion of cells. Herein we evaluated miRNAs expression for leprosy phenotypes in biopsies obtained from patients with and without reactions. We also correlated those miRNAs with both, bacillary index (BI) and genes involved in the micobacteria elimination process. Our results show a significant increase in the miR-125a-3p expression in paucibacillary (PB) patients vs multibacillary (MB) subjects (p = 0.007) and vs reversal reactions (RR) (p = 0.005), respectively. Likewise, there was a higher expression of miR-125a-3p in patients with erythema nodosum leprosum (ENL) vs MB without reactions (p = 0.002). Furthermore, there was a positive correlation between miR-125a-3p, miR-146b-5p and miR-132-5p expression and BI in patients with RR and ENL. These miRNAS were also correlated with genes such as ATG12 (miR-125a-3p), TNFRSF10A (miR-146b-5p), PARK2, CFLAR and STX7 (miR-132-5p). All together we underpin a role for these miRNAs in leprosy pathogenesis, implicating mechanisms such as apoptosis and autophagy in skin. The miR-125a-3p might have a distinct role associated with PB phenotype and ENL in MB patients.


Asunto(s)
MicroARNs , Mycobacterium leprae , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Femenino , Mycobacterium leprae/genética , Adulto , Persona de Mediana Edad , Lepra/microbiología , Lepra/patología , Lepra/genética , Piel/microbiología , Piel/patología , Apoptosis/genética , Muerte Celular , Adulto Joven , Anciano , Eritema Nudoso/microbiología , Eritema Nudoso/genética , Eritema Nudoso/patología , Autofagia/genética
2.
Front Cell Infect Microbiol ; 12: 917282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937686

RESUMEN

Multidrug therapy (MDT) has been successfully used in the treatment of leprosy. However, although patients are cured after the completion of MDT, leprosy reactions, permanent disability, and occasional relapse/reinfection are frequently observed in patients. The immune system of multibacillary patients (MB) is not able to mount an effective cellular immune response against M. leprae. Consequently, clearance of bacilli from the body is a slow process and after 12 doses of MDT not all MB patients reduce bacillary index (BI). In this context, we recruited MB patients at the uptake and after 12-month of MDT. Patients were stratified according to the level of reduction of the BI after 12 doses MDT. A reduction of at least one log in BI was necessary to be considered a responder patient. We evaluated the pattern of host gene expression in skin samples with RNA sequencing before and after MDT and between samples from patients with or without one log reduction in BI. Our results demonstrated that after 12 doses of MDT there was a reduction in genes associated with lipid metabolism, inflammatory response, and cellular immune response among responders (APOBEC3A, LGALS17A, CXCL13, CXCL9, CALHM6, and IFNG). Also, by comparing MB patients with lower BI reduction versus responder patients, we identified high expression of CDH19, TMPRSS4, PAX3, FA2H, HLA-V, FABP7, and SERPINA11 before MDT. From the most differentially expressed genes, we observed that MDT modulates pathways related to immune response and lipid metabolism in skin cells from MB patients after MDT, with higher expression of genes like CYP11A1, that are associated with cholesterol metabolism in the group with the worst response to treatment. Altogether, the data presented contribute to elucidate gene signatures and identify differentially expressed genes associated with MDT outcomes in MB patients.


Asunto(s)
Lepra Multibacilar , Lepra , Citidina Desaminasa , Quimioterapia Combinada , Expresión Génica , Humanos , Leprostáticos/farmacología , Leprostáticos/uso terapéutico , Lepra Multibacilar/tratamiento farmacológico , Lepra Multibacilar/genética , Mycobacterium leprae/genética , Proteínas
3.
Front Med (Lausanne) ; 9: 899998, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733868

RESUMEN

In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.

4.
PLoS Negl Trop Dis ; 16(2): e0009850, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180224

RESUMEN

Leprosy is a chronic dermato-neurological disease caused by Mycobacterium leprae, an obligate intracellular bacterium. Timely detection is a challenge in leprosy diagnosis, relying on clinical examination and trained health professionals. Furthermore, adequate care and transmission control depend on early and reliable pathogen detection. Here, we describe a qPCR test for routine diagnosis of leprosy-suspected patients. The reaction simultaneously amplifies two specific Mycobacterium leprae targets (16S rRNA and RLEP), and the human 18S rRNA gene as internal control. The limit of detection was estimated to be 2.29 copies of the M. leprae genome. Analytical specificity was evaluated using a panel of 20 other skin pathogenic microorganisms and Mycobacteria, showing no cross-reactivity. Intra- and inter-operator Cp variation was evaluated using dilution curves of M. leprae DNA or a synthetic gene, and no significant difference was observed between three operators in two different laboratories. The multiplex assay was evaluated using 97 patient samples with clinical and histopathological leprosy confirmation, displaying high diagnostic sensitivity (91%) and specificity (100%). Validation tests in an independent panel of 50 samples confirmed sensitivity and specificity of 97% and 98%, respectively. Importantly, assay performance remained stable for at least five months. Our results show that the newly developed multiplex qPCR effectively and specifically detects M. leprae DNA in skin samples, contributing to an efficient diagnosis that expedites the appropriate treatment.


Asunto(s)
Lepra/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mycobacterium leprae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adolescente , Adulto , Anciano , Niño , Preescolar , ADN Bacteriano/genética , Femenino , Humanos , Indicadores y Reactivos/normas , Lactante , Lepra/microbiología , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena de la Polimerasa Multiplex/normas , Mycobacterium leprae/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Sensibilidad y Especificidad , Adulto Joven
5.
PLoS Pathog ; 17(10): e1009972, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695167

RESUMEN

Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin lesions of leprosy patients or controls affected by other dermal conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of accurately distinguishing multibacillary and paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and enriched pathways, we conclude that paucibacillary disease is characterized by epithelioid transformation and granuloma formation, with an exacerbated cellular immune response, while multibacillary leprosy features epithelial-mesenchymal transition with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze the development of better diagnostic tools and potential host-based therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical manifestations.


Asunto(s)
Marcadores Genéticos/genética , Lepra/diagnóstico , Lepra/genética , Transcriptoma , Perfilación de la Expresión Génica , Humanos , ARN Mensajero/análisis , RNA-Seq
6.
Cells ; 10(9)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34571865

RESUMEN

Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.


Asunto(s)
Autofagia/genética , Interleucina-15/genética , Lepra/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Niño , Citocinas/genética , Femenino , Expresión Génica/genética , Humanos , Interferón gamma/genética , Lepra/microbiología , Masculino , Persona de Mediana Edad , Mycobacterium leprae/patogenicidad , Piel/metabolismo , Piel/microbiología , Células THP-1/metabolismo , Adulto Joven
7.
PLoS Negl Trop Dis ; 15(8): e0009434, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34449765

RESUMEN

Pyruvate kinase (PK), encoded by the PKLR gene, is a key player in glycolysis controlling the integrity of erythrocytes. Due to Plasmodium selection, mutations for PK deficiency, which leads to hemolytic anemia, are associated with resistance to malaria in sub-Saharan Africa and with susceptibility to intracellular pathogens in experimental models. In this case-control study, we enrolled 4,555 individuals and investigated whether PKLR single nucleotide polymorphisms (SNPs) putatively selected for malaria resistance are associated with susceptibility to leprosy across Brazil (Manaus-North; Salvador-Northeast; Rondonópolis-Midwest and Rio de Janeiro-Southeast) and with tuberculosis in Mozambique. Haplotype T/G/G (rs1052176/rs4971072/rs11264359) was associated with leprosy susceptibility in Rio de Janeiro (OR = 2.46, p = 0.00001) and Salvador (OR = 1.57, p = 0.04), and with tuberculosis in Mozambique (OR = 1.52, p = 0.07). This haplotype downregulates PKLR expression in nerve and skin, accordingly to GTEx, and might subtly modulate ferritin and haptoglobin levels in serum. Furthermore, we observed genetic signatures of positive selection in the HCN3 gene (xpEHH>2 -recent selection) in Europe but not in Africa, involving 6 SNPs which are PKLR/HCN3 eQTLs. However, this evidence was not corroborated by the other tests (FST, Tajima's D and iHS). Altogether, we provide evidence that a common PKLR locus in Africans contribute to mycobacterial susceptibility in African descent populations and also highlight, for first, PKLR as a susceptibility gene for leprosy and TB.


Asunto(s)
Malaria/genética , Polimorfismo de Nucleótido Simple , Piruvato Quinasa/genética , Adulto , Brasil , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Desequilibrio de Ligamiento , Modelos Logísticos , Masculino , Persona de Mediana Edad , Mozambique , Piruvato Quinasa/deficiencia , Adulto Joven
8.
Front Immunol ; 12: 647832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936067

RESUMEN

Leprosy is a disease with a clinical spectrum of presentations that is also manifested in diverse histological features. At one pole, lepromatous lesions (L-pole) have phagocytic foamy macrophages heavily parasitized with freely multiplying intracellular Mycobacterium leprae. At the other pole, the presence of epithelioid giant cells and granulomatous formation in tuberculoid lesions (T-pole) lead to the control of M. leprae replication and the containment of its spread. The mechanism that triggers this polarization is unknown, but macrophages are central in this process. Over the past few years, leprosy has been studied using large scale techniques to shed light on the basic pathways that, upon infection, rewire the host cellular metabolism and gene expression. M. leprae is particularly peculiar as it invades Schwann cells in the nerves, reprogramming their gene expression leading to a stem-like cell phenotype. This modulatory behavior exerted by M. leprae is also observed in skin macrophages. Here, we used live M. leprae to infect (10:1 multiplicity of infection) monocyte-derived macrophages (MDMs) for 48 h and analyzed the whole gene expression profile using microarrays. In this model, we observe an intense upregulation of genes consistent with a cellular immune response, with enriched pathways including peptide and protein secretion, leukocyte activation, inflammation, and cellular divalent inorganic cation homeostasis. Among the most differentially expressed genes (DEGs) are CCL5/RANTES and CYP27B1, and several members of the metallothionein and metalloproteinase families. This is consistent with a proinflammatory state that would resemble macrophage rewiring toward granulomatous formation observed at the T-pole. Furthermore, a comparison with a dataset retrieved from the Gene Expression Omnibus of M. leprae-infected Schwann cells (MOI 100:1) showed that the patterns among the DEGs are highly distinct, as the Schwann cells under these conditions had a scavenging and phagocytic gene profile similar to M2-like macrophages, with enriched pathways rearrangements in the cytoskeleton, lipid and cholesterol metabolism and upregulated genes including MVK, MSMO1, and LACC1/FAMIN. In summary, macrophages may have a central role in defining the paradigmatic cellular (T-pole) vs. humoral (L-pole) responses and it is likely that the multiplicity of infection and genetic polymorphisms in key genes are gearing this polarization.


Asunto(s)
Inmunidad Celular/genética , Lepra Lepromatosa/genética , Lepra Lepromatosa/inmunología , Macrófagos/inmunología , Macrófagos/virología , Mycobacterium leprae/inmunología , Transcriptoma , Adulto , Donantes de Sangre , Polaridad Celular/genética , Células Cultivadas , Femenino , Voluntarios Sanos , Humanos , Lepra Lepromatosa/microbiología , Masculino , Polimorfismo de Nucleótido Simple , Células de Schwann/inmunología , Células de Schwann/virología , Adulto Joven
9.
Front Immunol ; 12: 647385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777045

RESUMEN

Leprosy is an infectious disease that remains endemic in approximately 100 developing countries, where about 200,000 new cases are diagnosed each year. Moreover, multibacillary leprosy, the most contagious form of the disease, has been detected at continuously higher rates among Brazilian elderly people. Due to the so-called immunosenescence, characterized by several alterations in the quality of the immune response during aging, this group is more susceptible to infectious diseases. In view of such data, the purpose of our work was to investigate if age-related alterations in the immune response could influence the pathogenesis of leprosy. As such, we studied 87 individuals, 62 newly diagnosed and untreated leprosy patients distributed according to the age range and to the clinical forms of the disease and 25 healthy volunteers, who were studied as controls. The frequency of senescent and memory CD8+ leukocytes was assessed by immunofluorescence of biopsies from cutaneous lesions, while the serum levels of IgG anti-CMV antibodies were analyzed by chemiluminescence and the gene expression of T cell receptors' inhibitors by RT-qPCR. We noted an accumulation of memory CD8+ T lymphocytes, as well as reduced CD8+CD28+ cell expression in skin lesions from elderly patients, when compared to younger people. Alterations in LAG3 and PDCD1 gene expression in cutaneous lesions of young MB patients were also observed, when compared to elderly patients. Such data suggest that the age-related alterations of T lymphocyte subsets can facilitate the onset of leprosy in elderly patients, not to mention other chronic inflammatory diseases.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Senescencia Celular/inmunología , Memoria Inmunológica , Inmunosenescencia/inmunología , Lepra/inmunología , Mycobacterium leprae , Enfermedades de la Piel/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Antígenos CD/genética , Estudios de Casos y Controles , Citomegalovirus/inmunología , Femenino , Expresión Génica , Humanos , Inmunoglobulina G/sangre , Lepra/sangre , Lepra/microbiología , Lepra/patología , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/genética , Piel/inmunología , Piel/patología , Enfermedades de la Piel/sangre , Enfermedades de la Piel/microbiología , Enfermedades de la Piel/patología , Adulto Joven , Proteína del Gen 3 de Activación de Linfocitos
10.
s.l; s.n; 2021. 12 p. ilus, tab, graf.
No convencional en Inglés | Sec. Est. Saúde SP, HANSEN, CONASS, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1284237

RESUMEN

Leprosy is a disease with a clinical spectrum of presentations that is also manifested in diverse histological features. At one pole, lepromatous lesions (L-pole) have phagocytic foamy macrophages heavily parasitized with freely multiplying intracellular Mycobacterium leprae. At the other pole, the presence of epithelioid giant cells and granulomatous formation in tuberculoid lesions (T-pole) lead to the control of M. leprae replication and the containment of its spread. The mechanism that triggers this polarization is unknown, but macrophages are central in this process. Over the past few years, leprosy has been studied using large scale techniques to shed light on the basic pathways that, upon infection, rewire the host cellular metabolism and gene expression. M. leprae is particularly peculiar as it invades Schwann cells in the nerves, reprogramming their gene expression leading to a stem-like cell phenotype. This modulatory behavior exerted by M. leprae is also observed in skin macrophages. Here, we used live M. leprae to infect (10:1 multiplicity of infection) monocyte-derived macrophages (MDMs) for 48 h and analyzed the whole gene expression profile using microarrays. In this model, we observe an intense upregulation of genes consistent with a cellular immune response, with enriched pathways including peptide and protein secretion, leukocyte activation, inflammation, and cellular divalent inorganic cation homeostasis. Among the most differentially expressed genes (DEGs) are CCL5/RANTES and CYP27B1, and several members of the metallothionein and metalloproteinase families. This is consistent with a proinflammatory state that would resemble macrophage rewiring toward granulomatous formation observed at the T-pole. Furthermore, a comparison with a dataset retrieved from the Gene Expression Omnibus of M. leprae-infected Schwann cells (MOI 100:1) showed that the patterns among the DEGs are highly distinct, as the Schwann cells under these conditions had a scavenging and phagocytic gene profile similar to M2-like macrophages, with enriched pathways rearrangements in the cytoskeleton, lipid and cholesterol metabolism and upregulated genes including MVK, MSMO1, and LACC1/FAMIN. In summary, macrophages may have a central role in defining the paradigmatic cellular (T-pole) vs. humoral (L-pole) responses and it is likely that the multiplicity of infection and genetic polymorphisms in key genes are gearing this polarization.


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Adulto Joven , Lepra Lepromatosa/genética , Lepra Lepromatosa/inmunología , Inmunidad Celular/genética , Macrófagos/inmunología , Macrófagos/virología , Mycobacterium leprae/inmunología , Células de Schwann/inmunología , Polaridad Celular/genética , Polimorfismo de Nucleótido Simple , Transcriptoma
11.
Mol Genet Genomics ; 295(6): 1355-1368, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32661593

RESUMEN

Due to multiple hypothesis testing with often limited sample size, microarrays and other-omics technologies can sometimes produce irreproducible findings. Complementary to better experimental design, reanalysis and integration of gene expression datasets may help overcome reproducibility issues by identifying consistent differentially expressed genes from independent studies. In this work, after a systematic search, nine microarray datasets evaluating host gene expression in leprosy were reanalyzed and the information was integrated to strengthen evidence of differential expression for several genes. Our results are relevant in prioritizing genes and pathways for further investigation, whether in functional studies or in biomarker discovery. Reanalysis of individual datasets revealed several differentially expressed genes (DEGs) in accordance with original reports. Then, five integration methods (P value and effect size based) were tested. In the end, random-effects model and ratio association were selected as the main methods to pinpoint DEGs. Overall, classic pathways were found corroborating previous findings and validating this approach. Also, we identified some novel DEG involved especially with skin development processes (AQP3, AKR1C3, CYP27B1, LTB, VDR) and keratinocyte biology (CSTA, DSG1, KRT14, KRT5, PKP1, IVL), both still poorly understood in leprosy context. In addition, here we provide aggregated evidence towards some gene candidates that should be prioritized in further leprosy research, as they are likely important in immunopathogenesis. Altogether, these data are useful in better understanding host responses to the disease and, at the same time, provide a list of potential host biomarkers that could be useful in complementing leprosy diagnosis based on transcriptional levels.


Asunto(s)
Algoritmos , Biomarcadores/análisis , Biología Computacional/métodos , Genoma Humano , Lepra/genética , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Humanos , Lepra/patología , Reproducibilidad de los Resultados
12.
Front Microbiol ; 11: 711, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477280

RESUMEN

Human settlement of Madagascar traces back to the beginning of the first millennium with the arrival of Austronesians from Southeast Asia, followed by migrations from Africa and the Middle East. Remains of these different cultural, genetic, and linguistic legacies are still present in Madagascar and other islands of the Indian Ocean. The close relationship between human migration and the introduction and spread of infectious diseases, a well-documented phenomenon, is particularly evident for the causative agent of leprosy, Mycobacterium leprae. In this study, we used whole-genome sequencing (WGS) and molecular dating to characterize the genetic background and retrace the origin of the M. leprae strains circulating in Madagascar (n = 30) and the Comoros (n = 3), two islands where leprosy is still considered a public health problem and monitored as part of a drug resistance surveillance program. Most M. leprae strains (97%) from Madagascar and Comoros belonged to a new genotype as part of branch 1, closely related to single nucleotide polymorphism (SNP) type 1D, named 1D-Malagasy. Other strains belonged to the genotype 1A (3%). We sequenced 39 strains from nine other countries, which, together with previously published genomes, amounted to 242 genomes that were used for molecular dating. Specific SNP markers for the new 1D-Malagasy genotype were used to screen samples from 11 countries and revealed this genotype to be restricted to Madagascar, with the sole exception being a strain from Malawi. The overall analysis thus ruled out a possible introduction of leprosy by the Austronesian settlers and suggests a later origin from East Africa, the Middle East, or South Asia.

13.
PLoS Negl Trop Dis ; 14(5): e0008325, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453754

RESUMEN

Leprosy urgently needs a precise and early diagnostic tool. The sensitivity of the direct (bacilli staining, Mycobacterium leprae DNA) and indirect (antibody levels, T cell assays) diagnostics methods vary based on the clinical form. Recently, PCR-based M. leprae DNA detection has been shown to differentially diagnose leprosy from other dermatological conditions. However, accuracy can still be improved, especially for use with less invasive clinical samples. We tested different commercial DNA extraction kits: DNeasy Blood & Tissue, QIAamp DNA Microbiome, Maxwell 16 DNA Purification, PowerSoil DNA Isolation; as well as in-house phenol-chloroform and Trizol/FastPrep methods. Extraction was performed on M. leprae-infected mouse footpads and different clinical samples of leprosy patients (skin biopsies and scrapings, lesion, oral and nasal swabs, body hair, blood on FTA cards, peripheral whole blood). We observed that the Microbiome kit was able to enrich for mycobacterial DNA, most likely due the enzymatic digestion cocktail along with mechanical disruption involved in this method. Consequently, we had a significant increase in sensitivity in skin biopsies from paucibacillary leprosy patients using a duplex qPCR targeting 16S rRNA (M. leprae) and 18S rRNA (mammal) in the StepOnePlus system. Our data showed that the presence of M. leprae DNA was best detected in skin biopsies and skin scrapings, independent of the extraction method or the clinical form. For multibacillary patients, detection of M. leprae DNA in nasal swabs indicates the possibility of having a much less invasive sample that can be used for the purposes of DNA sequencing for relapse analysis and drug resistance monitoring. Overall, DNA extracted with the Microbiome kit presented the best bacilli detection rate for paucibacillary cases, indicating that investments in extraction methods with mechanical and DNA digestion should be made.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Mycobacterium leprae/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Animales , ADN Bacteriano/genética , Humanos , Ratones , Mycobacterium leprae/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad
14.
s.l; s.n; 2020. 15 p. ilus, graf, tab.
No convencional en Inglés | CONASS, Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1146399

RESUMEN

Leprosy is difficult to diagnose since it is caused by a bacterium that does not grow in vitro. Bacilli direct detection or the presence of specific antibodies can vary greatly depending on the clinical form. M. leprae direct DNA detection can aid clinical diagnosis, although invasive skin biopsies are still necessary to detect the pathogen or histological features consistent with leprosy. Here we show that a kit combining mechanical and chemical lysis efficiently removes host DNA and enriches for M. leprae DNA, allowing better detection of paucibacillary cases. We believe our findings can contribute to improving disease diagnosis, as well as early detection and that could help monitoring strategies(AU).


Asunto(s)
Humanos , Animales , Ratones , ADN Bacteriano/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Mycobacterium leprae/aislamiento & purificación , ADN Bacteriano/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad , Mycobacterium leprae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA