Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros


Bases de datos
Año de publicación
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(15): 8749-8759, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579123

RESUMEN

The precise impact of species and strain diversity on fungal-bacterial interactions and the overall community functioning has remained unclear. First, our study revealed how Debaryomyces hansenii influences diverse bacteria to accumulate key metabolites in a simulated fermented food system. For flavor, D. hansenii promoted the accumulation of branched-chain esters in Staphylococcus xylosus by promoting growth and facilitating the precursor branched-chain acids transformations but hindered the accumulation of Staphylococcus equorum. Furthermore, fungal-bacterial interactions displayed diversity among S. equorum strains. For bioactive compounds, species and strain diversity of lactic acid bacteria (LAB) also influences the production of indole derivatives. Then, we investigated specific metabolic exchanges under reciprocal interaction. Amino acids, rather than vitamins, were identified as the primary drivers of the bacterial growth promotion. Moreover, precursor transformations by D. hansenii played a significant role in branched-chain esters production. Finally, a synthetic community capable of producing high concentrations of branched-chain esters and indole derivatives was successfully constructed. These results provide valuable insights into understanding and designing synthetic communities for fermented sausages.


Asunto(s)
Productos de la Carne , Simbiosis , Ésteres , Fermentación , Ácidos , Productos de la Carne/análisis , Indoles
2.
Int J Food Microbiol ; 407: 110373, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37696140

RESUMEN

Microbial interactions play an important role in regulating the metabolic function of fermented food communities, especially the production of key flavor compounds. However, little is known about specific molecular mechanisms that regulate the production of key flavor compounds through microbial interactions. Here, we designed a synthetic consortium containing Debaryomyces hansenii D1, Staphylococcus xylosus S1, and Pediococcus pentosaceus PP1 to explore the mechanism of the microbial interactions underlying the branched-chain aldehydes production. In this consortium, firstly, D. hansenii secreted amino acids that promoted the growth of P. pentosaceus and S. xylosus. Specifically, D. hansenii D1 secreted alanine, aspartate, glutamate, glutamine, glycine, phenylalanine, serine, and threonine, which were the primary nutrients for bacterial growth. P. pentosaceus PP1 utilized all these eight amino acids through cross-feeding, whereas S. xylosus S1 did not utilize aspartate and serine. Furthermore, D. hansenii D1 promoted the production of branched-chain aldehydes from S. xylosus and P. pentosaceus through cross-feeding of α-keto acids (intermediate metabolites). Thus, the accumulation of 2-methyl-butanal was promoted in all co-culture. Overall, this work revealed the mechanism by which D. hansenii and bacteria cross-feed to produce branched-chain aldehydes in fermented sausages.


Asunto(s)
Ácido Aspártico , Productos de la Carne , Fermentación , Ácido Aspártico/metabolismo , Productos de la Carne/microbiología , Aldehídos , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA