Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros


Bases de datos
Año de publicación
Tipo del documento
Intervalo de año de publicación
1.
Exp Neurol ; 352: 114053, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341747

RESUMEN

Nine-banded armadillos develop peripheral neuropathy after experimental Mycobacterium leprae infection that recapitulates human disease. We used an intracutaneous excision axotomy model to assess the effect of infection duration by M. leprae on axonal sprouting and Schwan cell density. 34 armadillos (17 naïve and 17 M. leprae-infected) underwent 3 mm skin biopsies to create an intracutaneous excision axotomy followed by a concentric 4-mm overlapping biopsy 3 and 12-months post M. leprae inoculation. A traditional distal leg biopsy was obtained at 15mo for intraepidermal nerve fiber (IENF) density. Serial skin sections were immunostained against a axons (PGP9.5, GAP43), and Schwann cells (p75, s100) to visualize regenerating nerves. Regenerative axons and proliferation of Schwann cells was measured and the rate of growth at each time point was assessed. Increasing anti-PGL antibody titers and intraneural M. leprae confirmed infection. 15mo following infection, there was evidence of axon loss with reduced distal leg IENF versus naïve armadillos, p < 0.05. This was associated with an increase in Schwann cell density (11,062 ± 2905 vs. 7561 ± 2715 cells/mm3, p < 0.01). Following excisional biopsy epidermal reinnervation increased monotonically at 30, 60 and 90 days; the regeneration rate was highest at 30 days, and decreased at 60 and 90 days. The reinnervation rate was highest among animals infected for 3mo vs those infected for 12mo or naïve animals (mean ± SD, 27.8 ± 7.2 vs.16.2 ± 5.8vs. 15.3 ± 6.5 mm/mm3, p < 0.05). The infected armadillos displayed a sustained Schwann cell proliferation across axotomy time points and duration of infection (3mo:182 ± 26, 12mo: 256 ± 126, naive: 139 ± 49 cells/day, p < 0.05). M. leprae infection is associated with sustained Schwann cell proliferation and distal limb nerve fiber loss. Rates of epidermal reinnervation were highest 3mo after infection and normalized by 12 mo of infection. We postulate that excess Schwann cell proliferation is the main pathogenic process and is deleterious to sensory axons. There is a compensatory initial increase in regeneration rates that may be an attempt to compensate for the injury, but it is not sustained and eventually followed by axon loss. Aberrant Schwann cell proliferation may be a novel therapeutic target to interrupt the pathogenic cascade of M. leprae.


Asunto(s)
Lepra , Mycobacterium leprae , Animales , Armadillos/microbiología , Axotomía , Proliferación Celular , Lepra/complicaciones , Lepra/microbiología , Lepra/patología , Células de Schwann/patología
3.
NPJ Vaccines ; 3: 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619252

RESUMEN

Sustained elimination of leprosy as a global health concern likely requires a vaccine. The current standard, BCG, confers only partial protection and precipitates paucibacillary (PB) disease in some instances. When injected into mice with the T helper 1 (Th1)-biasing adjuvant formulation Glucopyranosyl Lipid Adjuvant in stable emulsion (GLA-SE), a cocktail of three prioritized antigens (ML2055, ML2380 and ML2028) reduced M. leprae infection levels. Recognition and protective efficacy of a single chimeric fusion protein incorporating these antigens, LEP-F1, was confirmed in similar experiments. The impact of post-exposure immunization was then assessed in nine-banded armadillos that demonstrate a functional recapitulation of leprosy. Armadillos were infected with M. leprae 1 month before the initiation of post-exposure prophylaxis. While BCG precipitated motor nerve conduction abnormalities more rapidly and severely than observed for control infected armadillos, motor nerve injury in armadillos treated three times, at monthly intervals with LepVax was appreciably delayed. Biopsy of cutaneous nerves indicated that epidermal nerve fiber density was not significantly altered in M. leprae-infected animals although Remak Schwann cells of the cutaneous nerves in the distal leg were denser in the infected armadillos. Importantly, LepVax immunization did not exacerbate cutaneous nerve involvement due to M. leprae infection, indicating its safe use. There was no intraneural inflammation but a reduction of intra axonal edema suggested that LepVax treatment might restore some early sensory axonal function. These data indicate that post-exposure prophylaxis with LepVax not only appears safe but, unlike BCG, alleviates and delays the neurologic disruptions caused by M. leprae infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA