Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros


Bases de datos
Tipos de estudio
Año de publicación
Tipo del documento
Intervalo de año de publicación
1.
Rev Latinoam Microbiol ; 44(3-4): 137-56, 2002.
Artículo en Español | MEDLINE | ID: mdl-17061488

RESUMEN

The term halophile is used for all those organisms belonging to hypersaline habitats; they constitute an interesting class of organisms able to compete successfully in salt water and to resist its denaturing effects. A wide diversity of microorganisms, prokaryotic and eukaryotic belong to this category. Halophile organisms have strategies allowing them not only to withstand osmotic stress, but also to function better in the presence of salt, in spite of maintaining high intracellular concentrations of salt, partly due to the synthesis of compatible solutes that allow them to balance their osmotic pressure. We describe the characteristics of some halophile organisms and D. hansenii (halophile yeast), that allow them to resist high concentrations of salt. The interest to know the great diversity microorganisms living in hypersaline habitats is growing, and has begun to be the center of recent investigations, since halophile organisms produce an wide variety of biomolecules that can be used for different applications. In this review we describe some mechanisms with which some halophile organisms count to resist the high concentration of salts, mainly NaCl.


Asunto(s)
Adaptación Fisiológica , Halobacteriales/fisiología , Saccharomycetales/fisiología , Animales , Proteínas Bacterianas/fisiología , Biotecnología/métodos , Chlorophyta/fisiología , Metabolismo Energético , Activación Enzimática , Células Eucariotas/efectos de los fármacos , Células Eucariotas/fisiología , Proteínas Fúngicas/fisiología , Regulación Bacteriana de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Halobacteriales/efectos de los fármacos , Líquido Intracelular/química , Lípidos de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Concentración Osmolar , Presión Osmótica , Fenómenos Fisiológicos de las Plantas , Saccharomycetales/efectos de los fármacos , Solución Salina Hipertónica/farmacología , Solubilidad , Alcoholes del Azúcar/metabolismo , Transcripción Genética
2.
J Membr Biol ; 132(3): 253-65, 1993 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7684088

RESUMEN

The prime potassium channel from the tonoplast of Chara corallina has been analyzed in terms of an enzymatic kinetic model (Gradmann, Klieber & Hansen 1987, Biophys. J. 53:287) with respect to its selectivity for K+ over Rb+ and to its blockage by Cs+ and by Ca2+. The channel was investigated by patch-clamp techniques over a range of membrane voltages (Vm, referred to an extracytoplasmic electrical potential of zero) from -200 mV to +200 mV under various ionic conditions (0 to 300 mM K+, Rb+, Cs+, Ca2+, and Cl-) on the two sides of isolated patches. The experimental data are apparent steady-state current-voltage relationships under all experimental conditions used and amplitude histograms of the seemingly noisy open-channel currents in the presence of Cs+. The used model for K+ uniport comprises a reaction cycle of one binding site through four states, i.e., (1) K(+)-loaded and charged, facing the cytoplasm, (2) K(+)-loaded and charged facing the vacuole, (3) empty, facing the vacuole, and (4) empty, facing the cytoplasm. Vm enters the system in the form of a symmetric Eyring barrier between state 1 and 2. The numerical results for the individual rate constants are (in 10(6)s-1 for zero voltage and 1 M substrate concentration): k12: 1,410, k21: 3,370, k23: 105,000, k32: 10,600, k34: 194, k43: 270, k41: 5,290, k14: 15,800. For the additional presence of an alternate transportee (here Rb+), the model can be extended in an analog way by another two states ((5) Rb(+)-loaded and charged, facing cytoplasm, and (6) Rb(+)-loaded and charged, facing vacuole) and six more rate constants (k45: 300, k54: 240, k56: 498, k65: 4,510, k63: 4,070, k36: 403). This six-state model with its unique set of fourteen parameters satisfies the complete set of experimental data. If the competing substrate can be bound but not translocated (here Cs+ and Ca2+). k56 and k65 of the model are zero, and the stability constants Kcyt (= k36/k63) and Kvac (= k45/k54) turn out to be Kcyt(Ca2+): 250 M-1 x exp(Vm/(64 mV)), kvac(Ca2+): 10 M-1 x exp(-Vm/(66 mV)), Kcyt(Cs+): 0, and Kvac(Cs+): 46 M-2 x exp(-Vm/(12.25 mV)).(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Chlorophyta/enzimología , Canales de Potasio/fisiología , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Cesio/metabolismo , Chlorophyta/citología , Chlorophyta/fisiología , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Potasio/metabolismo , Rubidio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA