Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Proc Natl Acad Sci U S A ; 102(26): 9188-93, 2005 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-15967991

RESUMEN

Activation of extracellular signal-regulated kinase (Erk) 1/2, which plays a critical role in diverse cellular processes, including cell proliferation, is known to be mediated by the canonical Raf-mitogen-activated protein kinase kinase (MEK) kinase cascade. Alternative MEK-independent signaling pathways for Erk1/2 activation in mammalian cells are not known. During our studies of human primary Schwann cell response to long-term infection of Mycobacterium leprae, the causative organism of leprosy, we identified that intracellular M. leprae activated Erk1/2 directly by lymphoid cell kinase (p56Lck), a Src family member, by means of a PKCepsilon-dependent and MEK-independent signaling pathway. Activation of this signaling induced nuclear accumulation of cyclin D1, G1/S-phase progression, and continuous proliferation, but without transformation. Thus, our data reveal a previously unknown signaling mechanism of glial cell proliferation, which might play a role in dedifferentiation as well as nerve regeneration and degeneration. Our findings may also provide a potential mechanism by which an obligate intracellular bacterial pathogen like M. leprae subverts nervous system signaling to propagate its cellular niche for colonization and long-term bacterial survival.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mycobacterium leprae/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/enzimología , Células de Schwann/metabolismo , Western Blotting , Bromodesoxiuridina/farmacología , Ciclo Celular , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular , Separación Celular , Colorantes/farmacología , Ciclina D1/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Fase G1 , Humanos , Lepra/microbiología , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Neuroglía/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Proteína Quinasa C/metabolismo , Proteína Quinasa C-epsilon , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fase S , Transducción de Señal , Factores de Tiempo , Transfección
2.
Mol Biol Evol ; 22(4): 1011-23, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15647519

RESUMEN

Among genes conserved from bacteria to mammals are those involved in replicating and repairing DNA. Following the complete sequencing of four hemiascomycetous yeast species during the course of the Genolevures 2 project, we have studied the conservation of 106 genes involved in replication, repair, and recombination in Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica and compared them with their Saccharomyces cerevisiae orthologues. We found that proteins belonging to the replication fork and to the nucleotide excision repair pathway were-on the average-more conserved than proteins involved in the checkpoint response to DNA damage or in meiotic recombination. The meiotic recombination proteins Spo11p and Mre11p-Rad50p, involved in making meiotic double-strand breaks (DSBs), are conserved as is Mus81p, involved in resolving meiotic recombination intermediates. Interestingly, genes found in organisms in which DSB-repair is required for proper synapsis during meiosis are also found in C. glabrata, K. lactis, and D. hansenii but not in Y. lipolytica, suggesting that two modes of meiotic recombination have been selected during evolution of the hemiascomycetous yeasts. In addition, we found that SGS1 and TOP1, respectively, a DEAD/DEAH helicase and a type I topoisomerase, are duplicated in C. glabrata and that SRS2, a helicase involved in homologous recombination, is tandemly duplicated in K. lactis. Phylogenetic analyses show that the duplicated SGS1 gene evolved faster than the original gene, probably leading to a specialization of function of the duplicated copy.


Asunto(s)
Ascomicetos/genética , Reparación del ADN/genética , Replicación del ADN , Genoma Fúngico , Recombinación Genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fase S/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA