Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hazard Mater ; 469: 133954, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484657

RESUMEN

Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.


Asunto(s)
Arsénico , Debaryomyces , Oryza , Debaryomyces/genética , Debaryomyces/metabolismo , Oryza/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Glutatión/metabolismo
2.
World J Microbiol Biotechnol ; 35(11): 170, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673816

RESUMEN

Debaryomyces hansenii is a halotolerant yeast of importance in basic and applied research. Previous reports hinted about possible links between saline and oxidative stress responses in this yeast. The aim of this work was to study that hypothesis at different molecular levels, investigating after oxidative and saline stress: (i) transcription of seven genes related to oxidative and/or saline responses, (ii) activity of two main anti-oxidative enzymes, (iii) existence of common metabolic intermediates, and (iv) generation of damages to biomolecules as lipids and proteins. Our results showed how expression of genes related to oxidative stress was induced by exposure to NaCl and KCl, and, vice versa, transcription of some genes related to osmotic/salt stress responses was regulated by H2O2. Moreover, and contrary to S. cerevisiae, in D. hansenii HOG1 and MSN2 genes were modulated by stress at their transcriptional level. At the enzymatic level, saline stress also induced antioxidative enzymatic defenses as catalase and glutathione reductase. Furthermore, we demonstrated that both stresses are connected by the generation of intracellular ROS, and that hydrogen peroxide can affect the accumulation of in-cell sodium. On the other hand, no significant alterations in lipid oxidation or total glutathione content were observed upon exposure to both stresses tested. The results described in this work could help to understand the responses to both stressors, and to improve the biotechnological potential of D. hansenni.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrés Oxidativo/fisiología , Saccharomycetales/fisiología , Estrés Salino/fisiología , Antioxidantes , Catalasa/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno , Metabolismo de los Lípidos , Osmorregulación/genética , Osmorregulación/fisiología , Estrés Oxidativo/genética , Cloruro de Potasio/metabolismo , Proteómica , Saccharomycetales/genética , Estrés Salino/genética , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Factores de Transcripción/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-27088927

RESUMEN

Glutathione is a low molecular weight thiol-tripeptide that plays a prominent role in maintaining intracellular redox balance. In addition to its remarkable antioxidant properties, the discovery of its antimelanogenic properties has led to its promotion as a skin-lightening agent. It is widely used for this indication in some ethnic populations. However, there is a dichotomy between evidence to support its efficacy and safety. The hype around its depigmentary properties may be a marketing gimmick of pharma-cosmeceutical companies. This review focuses on the various aspects of glutathione: its metabolism, mechanism of action and the scientific evidence to evaluate its efficacy as a systemic skin-lightening agent. Glutathione is present intracellularly in its reduced form and plays an important role in various physiological functions. Its skin-lightening effects result from direct as well as indirect inhibition of the tyrosinase enzyme and switching from eumelanin to phaeomelanin production. It is available in oral, parenteral and topical forms. Although the use of intravenous glutathione injections is popular, there is no evidence to prove its efficacy. In fact, the adverse effects caused by intravenous glutathione have led the Food and Drug Administration of Philippines to issue a public warning condemning its use for off-label indications such as skin lightening. Currently, there are three randomized controlled trials that support the skin-lightening effect and good safety profile of topical and oral glutathione. However, key questions such as the duration of treatment, longevity of skin-lightening effect and maintenance protocols remain unanswered. More randomized, double-blind, placebo-controlled trials with larger sample size, long-term follow-up and well-defined efficacy outcomes are warranted to establish the relevance of this molecule in disorders of hyperpigmentation and skin lightening.


Asunto(s)
Glutatión/administración & dosificación , Hiperpigmentación/tratamiento farmacológico , Preparaciones para Aclaramiento de la Piel/administración & dosificación , Pigmentación de la Piel/efectos de los fármacos , Administración Intravenosa , Administración Oral , Administración Tópica , Suplementos Dietéticos , Glutatión/metabolismo , Humanos , Hiperpigmentación/diagnóstico , Hiperpigmentación/metabolismo , Oxidación-Reducción , Pigmentación de la Piel/fisiología
4.
Life Sci ; 83(5-6): 155-63, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18602405

RESUMEN

Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on expression/activity of the main DDS phase-II-metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxidation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.


Asunto(s)
Dapsona/farmacología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Femenino , Glucuronosiltransferasa/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
5.
Mol Pharm ; 5(6): 1138-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19434859

RESUMEN

Thalidomide as an effective treatment for multiple myeloma and leprosy has also caused birth defects in thousands of children five decades ago particularly in Europe. Thus its use in humans remains limited. The rapid and fatal approval of thalidomide at that time ultimately was a consequence of the sole use of thalidomide-insensitive species in animal toxicity tests. Here, we aimed at elucidating the molecular basis for the resistance of mice to thalidomide teratogenicity. By using hydroethidine staining we demonstrate that thalidomide induces the formation of superoxide in embryonic fibroblasts of thalidomide-sensitive species but not in those of mice. As determined by trypan blue staining, scavenging of superoxide prevents thalidomide-induced apoptosis, a marker for thalidomide teratogenicity. Mouse embryonic fibroblasts are found to have higher glutathione levels than those of sensitive species and can be sensitized for thalidomide by glutathione depletion with diethyl maleate or diamide. Accordingly, experimental increase of glutathione levels in human embryonic fibroblasts by adding N-acetyl cysteine or glutathione ethyl ester to the culture medium counteracts thalidomide-induced apoptosis. Finally, we show that thalidomide-induced molecular pathology downstream of superoxide is essentially identical in human and sensitized mouse embryonic fibroblasts. In conclusion, thalidomide-resistance is based on the capacity of the glutathione-dependent antioxidant defense. We provide a basis to pharmacologically overcome the limitations of thalidomide use at humans and describe substantial differences between human and mouse embryonic cells regarding the protection against oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Glutatión/metabolismo , Teratógenos/farmacología , Talidomida/farmacología , Acetilcisteína/farmacología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Pollos , Medios de Cultivo Condicionados/farmacología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Embrión no Mamífero , Fibroblastos/metabolismo , Depuradores de Radicales Libres/farmacología , Glutatión/análogos & derivados , Glutatión/análisis , Glutatión/farmacología , Humanos , Ratones , Superóxidos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA