Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros


Bases de datos
Tipos de estudio
Año de publicación
Tipo del documento
Intervalo de año de publicación
1.
Fungal Biol ; 125(2): 134-142, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33518203

RESUMEN

The environmental conditions during the ripening of dry-cured meats and their nutritional composition promote the colonisation of their surface by Penicillium spp., including P. nordicum producer of ochratoxin A (OTA). The objective of this work was to study the competitiveness of three potential biocontrol candidates (Debaryomyces hansenii FHSCC 253H, Enterococcus faecium SE920 and Penicillium chrysogenum CECT, 20922) against the ochratoxigenic P. nordicum FHSCC4 under environmental and nutritional conditions simulating the ripening of dry-cured meat products. For this, the nutritional utilisation pattern, niche overlap index (NOI), interactions by dual-culture assays and OTA production were determined. The number of carbon sources (CSs) metabolised depended on the microorganism and the interacting water activity (aw) x temperature conditions. The number of CSs utilised by both filamentous fungi was quite similar and higher than those utilised by D. hansenii and E. faecium. The yeast isolate metabolised a number of CSs much larger than the bacterium. The NOI values showed that, in general, P. nordicum nutritionally dominated E. faecium and D. hansenii regardless of the environmental conditions evaluated. The relationship between the toxigenic and non-toxigenic fungal isolates depended on the aw x temperature combinations, although in none of the conditions a dominance of P. nordicum was observed. According to the interaction assays, both D. hansenii and P. chrysogenum decreased the growth of P. nordicum. The effect of D. hansenii could be attributed to the production of some extra-cellular compounds, while the action of P. chrysogenum is likely related to nutritional competition. In addition, both P. chrysogenum and D. hansenii reduced the OTA levels produced by P. nordicum. The effect of the yeast was more pronounced decreasing the concentration of OTA at quantities lower than the limit established by the Italian legislation. Therefore, P. chrysogenum and D. hansenii can be suggested as biocontrol candidates in the manufacture of dry-cured meat products.


Asunto(s)
Agentes de Control Biológico , Microbiología de Alimentos , Productos de la Carne , Interacciones Microbianas , Penicillium , Enterococcus faecium/fisiología , Microbiología de Alimentos/métodos , Alimentos en Conserva/microbiología , Productos de la Carne/análisis , Productos de la Carne/microbiología , Interacciones Microbianas/fisiología , Ocratoxinas/análisis , Ocratoxinas/metabolismo , Penicillium/fisiología , Penicillium chrysogenum/fisiología , Saccharomycetales/fisiología
2.
Toxins (Basel) ; 11(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817538

RESUMEN

The ecological conditions during the ripening of dry-cured ham favour the development of moulds on its surface, being frequently the presence of Penicillium nordicum, a producer of ochratoxin A (OTA). Biocontrol using moulds and yeasts usually found in dry-cured ham is a promising strategy to minimize this hazard. The aim of this work is to evaluate the effect of previously selected Debaryomyces hansenii and Penicillium chrysogenum strains on growth, OTA production, and relative expression of genes involved in the OTA biosynthesis by P. nordicum. P. nordicum was inoculated against the protective cultures individually and combined on dry-cured ham for 21 days at 20 °C. None of the treatments reduced the growth of P. nordicum, but all of them decreased OTA concentration. The lower production of OTA could be related to significant repression of the relative expression of otapksPN and otanpsPN genes of P. nordicum. The efficacy of the combined protective cultures was tested in 24 dry-cured hams in industrial ripening (an 8 month-long production). OTA was detected in nine of the 12 dry-cured hams in the batch inoculated only with P. nordicum. However, in the batch inoculated with both P. nordicum and the combined protective culture, a considerable reduction of OTA contamination was observed. In conclusion, although the efficacy of individual use P. chrysogenum is great, the combination with D. hansenii enhances its antifungal activity and could be proposed as a mixed protective culture to control the hazard of the presence of OTA in dry-cured ham.


Asunto(s)
Debaryomyces , Contaminación de Alimentos/prevención & control , Ocratoxinas , Penicillium , Carne de Cerdo , Agentes de Control Biológico , Ocratoxinas/metabolismo , Penicillium/metabolismo
3.
Int J Food Microbiol ; 305: 108243, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31200120

RESUMEN

Dry-cured meat products are usually contaminated with moulds during ripening. Although fungal development contributes to the desired sensory characteristics, some moulds, such as Penicillium nordicum are able to produce ochratoxin A (OTA) on meat products. Therefore, strategies to prevent OTA contamination in ripened meat products are required. Microorganisms isolated from these meat products can be adequate as biocontrol agents, given that no negative sensory impact is expected. The PgAFP antifungal protein-producer Penicillium chrysogenum (Pc) and Debaryomyces hansenii (Dh) have been shown to successfully inhibit toxigenic moulds. However, scarce information about the mechanism of action of these biocontrol agents on toxigenic mould inhibition is available. Comparative proteomic analysis is a powerful tool to investigate the physiological response of microorganisms to stimuli. Proteomic analysis was carried out on P. nordicum co-cultured with Pc, Dh, PgAFP, and their combinations on a dry-cured ham-based medium. Additionally, OTA production by P. nordicum in the different cultures was measured. The individual inoculation of Pc or Dh repressed OTA production by P. nordicum by 5 and 3.15 fold, respectively. A total of 2844 unique P. nordicum proteins were identified by proteomic analysis. The impact of the biocontrol agents on the proteome of P. nordicum was higher for Pc-containing cultures, followed by Dh-containing treatments. PgAFP alone had minimal impact on the proteome of P. nordicum. Proteomic analyses indicated Pc repressed P. nordicum OTA production through nutrient competition, potentially reducing glucose availability. Data also suggest that Dh and Pc inhibited P. nordicum through cell wall integrity impairment. Both Pc and Dh seem to hamper P. nordicum secondary metabolism (SM) as indicated by lower levels of MAP kinases and SM-associated proteins found in the co-inoculated P. nordicum. This work paves the way to use antifungal agents in the most efficient way to prevent OTA formation in meat products.


Asunto(s)
Debaryomyces/aislamiento & purificación , Proteínas Fúngicas/genética , Productos de la Carne/microbiología , Ocratoxinas/metabolismo , Penicillium chrysogenum/aislamiento & purificación , Penicillium/metabolismo , Animales , Debaryomyces/genética , Debaryomyces/metabolismo , Microbiología de Alimentos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Productos de la Carne/análisis , Ocratoxinas/análisis , Penicillium/genética , Penicillium/crecimiento & desarrollo , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Proteómica , Metabolismo Secundario , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA