Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Protein Pept Sci ; 19(2): 155-171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28707598

RESUMEN

Cells possess protein quality control mechanisms to maintain proper cellular homeostasis. In eukaryotes, the roles of the ubiquitination and proteasome-mediated degradation of cellular proteins is well established. Recent studies have elucidated protein tagging mechanisms in prokaryotes, involving transfer messenger RNA (tmRNA) and pupylation. In this review, newer insights and bioinformatics analysis of two distinct bacterial protein tagging machineries are discussed. The machinery for tmRNAmediated tagging is present in several eubacterial representatives, e.g. Escherichia coli, Mycobacterium tuberculosis, Bacillus subtilis etc., but not in two archaeal representatives, such as Thermoplasma acidophilum and Sulfolobus solfataricus. On the other hand, the machinery involving tagging with the prokaryotic ubiquitin-like protein (Pup) is absent in most bacteria but is encoded in some eubacterial representatives, e.g. Mycobacterium tuberculosis and Mycobacterium leprae. Furthermore, molecular details on the relationship between protein tagging and enzymes involved in protein degradation in bacteria during infection are emerging. Several pathogenic bacteria that do not express the major ATP-dependent proteases, Lon and Caseinolytic protease (ClpP), are avirulent. Also, some ATP-independent peptidases, such as PepA and PepN, modulate the infection process. The roles of bacterial proteins involved in tagging and degradation during infection are discussed. These aspects add a new dimension to better understanding of the peculiarities of host-pathogen interactions.


Asunto(s)
Proteínas Arqueales/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , ARN Bacteriano/metabolismo , Animales , Archaea/metabolismo , Proteínas Arqueales/genética , Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno , Humanos , Péptido Hidrolasas/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Ubiquitina/metabolismo , Ubiquitinación
2.
J Cell Sci ; 130(12): 1997-2006, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476940

RESUMEN

Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Ubiquitinación , Animales , Daño del ADN , Endopeptidasas/metabolismo , Humanos , Inflamación , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mapeo de Interacción de Proteínas , Proteolisis , Transducción de Señal
3.
J Cell Sci ; 130(12): 1985-1996, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476939

RESUMEN

Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Asunto(s)
Bacterias/enzimología , Fenómenos Fisiológicos Bacterianos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Escherichia coli , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Legionella , Ratones , Plantas/microbiología , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Salmonella , Transducción de Señal , Nicotiana , Ubiquitinación , Virulencia , Xanthomonas campestris
4.
Nature ; 501(7468): 512-6, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24005326

RESUMEN

Ubiquitin-mediated targeting of intracellular bacteria to the autophagy pathway is a key innate defence mechanism against invading microbes, including the important human pathogen Mycobacterium tuberculosis. However, the ubiquitin ligases responsible for catalysing ubiquitin chains that surround intracellular bacteria are poorly understood. The parkin protein is a ubiquitin ligase with a well-established role in mitophagy, and mutations in the parkin gene (PARK2) lead to increased susceptibility to Parkinson's disease. Surprisingly, genetic polymorphisms in the PARK2 regulatory region are also associated with increased susceptibility to intracellular bacterial pathogens in humans, including Mycobacterium leprae and Salmonella enterica serovar Typhi, but the function of parkin in immunity has remained unexplored. Here we show that parkin has a role in ubiquitin-mediated autophagy of M. tuberculosis. Both parkin-deficient mice and flies are sensitive to various intracellular bacterial infections, indicating parkin has a conserved role in metazoan innate defence. Moreover, our work reveals an unexpected functional link between mitophagy and infectious disease.


Asunto(s)
Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Inmunidad Innata/inmunología , Mycobacterium marinum/inmunología , Mycobacterium tuberculosis/inmunología , Salmonella typhimurium/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Autofagia/inmunología , Células de la Médula Ósea/microbiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Lisina/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia , Modelos Inmunológicos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Poliubiquitina/química , Poliubiquitina/metabolismo , Simbiosis/inmunología , Tuberculosis/enzimología , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/patología , Ubiquitina/análisis , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo
5.
Cell Microbiol ; 14(8): 1287-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22524898

RESUMEN

Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence.


Asunto(s)
Citoplasma/microbiología , Mycobacterium/patogenicidad , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular , Técnicas de Sustitución del Gen , Interacciones Huésped-Patógeno , Humanos , Lisosomas/microbiología , Lisosomas/ultraestructura , Mycobacterium/genética , Mycobacterium/metabolismo , Fagosomas/microbiología , Fagosomas/ultraestructura , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA