Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366992

RESUMO

Hanseniaspora is the main genus of the apiculate yeast group that represents approximately 70% of the grape-associated microflora. Hanseniaspora vineae is emerging as a promising species for quality wine production compared to other non-Saccharomyces species. Wines produced by H. vineae with Saccharomyces cerevisiae consistently exhibit more intense fruity flavors and complexity than wines produced by S. cerevisiae alone. In this work, genome sequencing, assembling, and phylogenetic analysis of two strains of H. vineae showed that it is a member of the Saccharomyces complex and it diverged before the whole-genome duplication (WGD) event from this clade. Specific flavor gene duplications and absences were identified in the H. vineae genome compared to 14 fully sequenced industrial S. cerevisiae genomes. The increased formation of 2-phenylethyl acetate and phenylpropanoids such as 2-phenylethyl and benzyl alcohols might be explained by gene duplications of H. vineae aromatic amino acid aminotransferases (ARO8 and ARO9) and phenylpyruvate decarboxylases (ARO10). Transcriptome and aroma profiles under fermentation conditions confirmed these genes were highly expressed at the beginning of stationary phase coupled to the production of their related compounds. The extremely high level of acetate esters produced by H. vineae compared to that by S. cerevisiae is consistent with the identification of six novel proteins with alcohol acetyltransferase (AATase) domains. The absence of the branched-chain amino acid transaminases (BAT2) and acyl coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1) genes correlates with H. vineae's reduced production of branched-chain higher alcohols, fatty acids, and ethyl esters, respectively. Our study provides sustenance for understanding and potentially utilizing genes that determine fermentation aromas.IMPORTANCE The huge diversity of non-Saccharomyces yeasts in grapes is dominated by the apiculate genus Hanseniaspora Two native strains of Hanseniaspora vineae applied to winemaking because of their high oenological potential in aroma and fermentation performance were selected to obtain high-quality genomes. Here, we present a phylogenetic analysis and the complete transcriptome and aroma metabolome of H. vineae during three fermentation steps. This species produced significantly richer flavor compound diversity than Saccharomyces, including benzenoids, phenylpropanoids, and acetate-derived compounds. The identification of six proteins, different from S. cerevisiae ATF, with diverse acetyltransferase domains in H. vineae offers a relevant source of native genetic variants for this enzymatic activity. The discovery of benzenoid synthesis capacity in H. vineae provides a new eukaryotic model to dilucidate an alternative pathway to that catalyzed by plants' phenylalanine lyases.


Assuntos
Genoma Fúngico , Hanseniaspora/genética , Paladar , Transcriptoma , Vinho/análise , Fermentação , Hanseniaspora/metabolismo
2.
Front Genet ; 9: 747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687397

RESUMO

There is increasing interest in the use of non-Saccharomyces yeasts in winemaking due to their positive attributes. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good fermentation capacity and an increase in aromatic properties. However, this yeast represents a concern in mixed culture fermentation because of its nutrient consumption, especially nitrogen, as its mechanisms of regulation and consumption are still unknown. In this study, we analyzed the nitrogen consumption, as well as the nitrogen catabolism repression (NCR) mechanism, in two genome-sequenced H. vineae strains, using synthetic must fermentations. The use of synthetic must with an established nitrogen content allowed us to study the NCR mechanism in H. vineae, following the amino acid and ammonia consumption, and the expression of genes known to be regulated by the NCR mechanism in S. cerevisiae, AGP1, GAP1, MEP2, and PUT2. H. vineae exhibited a similar amino acid consumption and gene expression profile to S. cerevisiae. However, the wine strain of S. cerevisiae QA23 consumed ammonia and valine more quickly and, in contrast, tyrosine and tryptophan more slowly, than the H. vineae strains. Our results showed a similar behavior of nitrogen regulation in H. vineae and S. cerevisiae, indicating the presence of the NCR mechanism in this Hanseniaspora yeast differentiated before the whole genome duplication event of the Saccharomyces complex. Future study will elucidate if the NCR mechanism is the only strategy used by H. vineae to optimize nitrogen consumption.

3.
J Agric Food Chem ; 64(22): 4574-83, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193819

RESUMO

Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.


Assuntos
Benzaldeídos/metabolismo , Álcoois Benzílicos/metabolismo , Aromatizantes/metabolismo , Hanseniaspora/metabolismo , Vitis/microbiologia , Vinho/análise , Benzaldeídos/análise , Álcoois Benzílicos/análise , Fermentação , Aromatizantes/análise , Hanseniaspora/genética , Vitis/metabolismo
4.
Yeast ; 33(7): 323-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26945700

RESUMO

In several grape varieties, the dominating aryl alkyl alcohols found are the volatile group of phenylpropanoid-related compounds, such as glycosylated benzyl and 2-phenylethyl alcohol, which contribute to wine with floral and fruity aromas after being hydrolysed during fermentation. Saccharomyces cerevisiae is largely recognized as the main agent in grape must fermentation, but yeast strains belonging to other genera, including Hanseniaspora, are known to predominate during the first stages of alcoholic fermentation. Although non-Saccharomyces yeast strains have a well-recognized genetic diversity, understanding of their impact on wine flavour richness is still emerging. In this study, 11 Hansenisapora vineae strains were used to ferment a chemically defined simil-grape fermentation medium, resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites. GC-MS analysis was performed to determine volatile compounds in the produced wines. Our results showed that benzyl alcohol, benzyl acetate and 2-phenylethyl acetate are significantly synthesized by H. vineae strains. Levels of these compounds found in fermentations with 11 H. vineae different strains were one or two orders of magnitude higher than those measured in fermentations with a known S. cerevisiae wine strain. The implications for winemaking in response to the negative correlation of benzyl alcohol, benzyl acetate and 2-phenylethyl acetate production with yeast assimilable nitrogen concentrations are discussed. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Fermentação , Hanseniaspora/metabolismo , Nitrogênio/metabolismo , Fenóis/metabolismo , Vinho , Acetatos/metabolismo , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Álcool Benzílico/metabolismo , Compostos de Benzil/metabolismo , Aromatizantes/análise , Aromatizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio/química , Fenóis/análise , Fenóis/química , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitis/química
5.
Genome Announc ; 2(3)2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24874663

RESUMO

The use of novel yeast strains for winemaking improves quality and provides variety including subtle characteristic differences in fine wines. Here we report the first genome of a yeast strain native to Uruguay, Hanseniaspora vineae T02/19AF, which has been shown to positively contribute to aroma and wine quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA