Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biotechnol Appl Biochem ; 68(5): 992-1002, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32885506

ABSTRACT

This study reports the green synthesis and urease inhibitory activities of Ag and Au nanoparticles (NPs) using Crataegus oxyacantha extract. The synthesized NPs were characterized by UV-visible, FT-IR spectroscopy, atomic force microscopy, and scanning electron microscopy. The obtained NPs were spherical in shape, and their size was around 85 nm. A strong correlation between the phytochemicals present in the extract and their capability for the synthesis of NPs was observed. Furthermore, the shape, size, stability, and bioactivity of the NPs were strongly influenced by the stabilizing phytochemicals. The experimental analysis suggested that these NPs have substantial stability in a diverse range of physiological conditions such as pH, salinity, and temperature. The NPs exhibited potent urease enzyme inhibitory activities with percent inhibition of 99.25 and IC50 value of 1.38 ± 0.3, comparable to the standard (thiourea percent inhibition, that is, 98.2% and IC50 value 5.3 ± 0.04). These results suggested that the proposed NPs could be used in the homeopathic and pharmaceutical industries for biomedical applications.


Subject(s)
Crataegus/chemistry , Enzyme Inhibitors/pharmacology , Green Chemistry Technology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Urease/antagonists & inhibitors , Canavalia/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Particle Size , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Silver/chemistry , Silver/pharmacology , Urease/metabolism
2.
Zhong Xi Yi Jie He Xue Bao ; 10(5): 546-54, 2012 May.
Article in English | MEDLINE | ID: mdl-22587977

ABSTRACT

OBJECTIVE: To examine if a homeopathic mother tincture (Phytolacca Decandra) is capable of precipitating silver nanoparticles from silver nitrate (AgNO(3)) and to characterize the biosynthesized nanoparticles for evaluating their biological activities. METHODS: A total of 100 mg of AgNO(3) was added to 20mL of Milli-Q water and stirred vigorously. Then 5mL of the homeopathic mother tincture of Phytolacca Decandra (ethanolic root extract of Phytolacca decandra) was added and stirred continuously. Reduction took place rapidly at 300K and completed in 10 min as shown by stable light greenish-yellow color of the solution which gave colloid of silver nanoparticles. The colloid solution was then centrifuged at 5000×g to separate the nanoparticles for further use. The nanoparticles were characterized by spectroscopic analysis, particle size analysis and zeta potential measurements, and morphology was analyzed by atomic force microscopy. The drug-DNA interaction was determined by circular dichroism spectrophotometry and melting temperature profiles by using calf thymus DNA as the target. The biological activities were determined using a cancer cell line A549 in vitro and using bacteria Escherichia coli and fungus Saccharomyces cerevisiae as test models. RESULTS: Phytolacca Decandra precipitated silver nanoparticles in ambient conditions. The nanoparticles had 91 nm particle size, with polydispersity index of 0.119 and zeta potential of -15.6 mV. The silver nanoparticles showed anticancer and antibacterial properties, but no clear antifungal properties. CONCLUSION: This could be a novel environment-friendly method to biosynthesize silver nanoparticles using a cost-effective, nontoxic manner. The homeopathic mother tincture may utilize this property of nano-precipitation in curing diseases or disease symptoms.


Subject(s)
Green Chemistry Technology , Homeopathy , Metal Nanoparticles , Phytolacca/chemistry , Silver Nitrate/chemistry , Materia Medica/chemistry , Particle Size , Plant Extracts/chemistry , Silver/chemistry
3.
Mater Sci Eng C Mater Biol Appl ; 108: 110421, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923969

ABSTRACT

Phytochemicals sources have been extensively used as reducing and capping agents for synthesis of nanoparticles (NPs). However, morphology-controlled synthesis and shape/size dependent applications of these NPs still need to be explored further, and there is a need to develop a way in which particular and optimized phytochemicals result in the desired NPs in lesser time and cost with higher reproducibility rate. The present study is focused on morphology-controlled synthesis and shape/size dependent application of silver NPs based on the fractionated phytochemicals of Elaeagnus umbellata extract (EU). Unlike other approaches, in this study the reaction parameters such as time, temperature, pH, stirring speed and concentration of the precursor solutions were not altered during the optimization process. The fractionated phytochemicals were used separately for the synthesis of AgNPs, and the synthesized NPs were characterized by UV-visible, FT-IR, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Our findings suggested that the constituents of the extract fractions varied with the selection of the extraction solvent, and the shape/size, bactericidal properties and toxicity of the NPs have a strong correlation with the phytochemicals of the plant extract. The fractionated phytochemicals present in the water fractions (EUW) resulted in monodispersed spherical AgNPs in the size about 40 nm. The NPs have significant stability in physiological conditions (i.e. temperature, pH and salt), have good antibacterial activity, and were found to be non-toxic. Furthermore, AFM and SEM analysis exposed that the NPs killed the bacteria by disturbing the cellular morphology and releasing the cellular matrix. Our results justify the use of different fractions of plant extract to obtain detail implications on shape, size, antibacterial potential and toxicity of AgNPs. This is the first step in a controllable, easy and cheap approach for the synthesis of highly stable, uniform, non-toxic and bactericidal AgNPs using five fractions of EU. The findings suggested that the synthesized NPs, particularly from EUW, could be used in pharmaceutical and homeopathic industry for the development of antibacterial medications.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Elaeagnaceae , Green Chemistry Technology , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared
4.
Colloids Surf B Biointerfaces ; 179: 317-325, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30981067

ABSTRACT

In the past few years, biologically synthesized silver nanoparticles (AgNPs) have been standout amongst the most utilized nanoparticles both in the field of therapeutics and clinical practices. Therefore, the current study aimed to synthesize AgNPs for the first time using aqueous root extracts of important plants of Pakistan i.e. Bergenia ciliata, Bergenia stracheyi, Rumex dantatus and Rumex hastatus and characterize them. In addition, antibacterial activity of synthesized AgNPs at 30-150 µg/well was assessed using well diffusion method against Staphylococcus aureus, Staphylococcus haemolyticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa bacterial strains that are considered most harmful bacteria for human beings. The characterization of synthesized AgNPs showed the absorption maxima ranged from 434 to 451 nm and XRD confirmed the crystalline nature of AgNPs as well as FTIR elucidated the involvement of biomolecules for reduction and capping of AgNPs. SEM determined the average size of AgNPs ranging from 25 to 73 nm and strong signals of silver were captured in EDX images. The result of antibacterial activity showed that only aqueous root extracts of all selected plants were inactive against all the tested bacterial strains. However, importantly, direct relationship between zone of inhibition of S. aureus, S. typhi and P. aeruginosa was found with increasing concentration of AgNPs of each selected plant. Moreover, S. haemolyticus was only inhibited by R. hastatus based AgNPs at only high concentrations and E. coli was inhibited by R. dantatus and R. hastatus based AgNPs. However, B. cereus was not inhibited by any AgNPs except R. hastatus and R. hastatus based AgNPs have greater antibacterial potential among all the synthesized AgNPs. These results suggest that synthesized AgNPs have improved antibacterial potential of root extracts of each selected plant and these synthesized AgNPs could be used in pharmaceutical and homeopathic industry for the cure of human diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Plants, Medicinal/chemistry , Silver/pharmacology , Water/chemistry , Bacteria/drug effects , Green Chemistry Technology , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Colloids Surf B Biointerfaces ; 101: 325-36, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23010037

ABSTRACT

The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer.


Subject(s)
Cell Division/drug effects , Cell Survival/drug effects , G2 Phase/drug effects , Gelsemium/chemistry , Hydrastis/chemistry , Nanoparticles/chemistry , Phytolacca dodecandra/chemistry , Silver/chemistry , Thuja/chemistry , Biphenyl Compounds/chemistry , Cell Line , Circular Dichroism , Comet Assay , DNA Damage , Escherichia coli/drug effects , Ethanol , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Particle Size , Picrates/chemistry , Real-Time Polymerase Chain Reaction , Silver Nitrate/chemistry , Solvents , Spectrophotometry, Ultraviolet , X-Ray Diffraction
6.
São Paulo; BEST SELLER; 1989. 475 p.
Monography in Portuguese | LILACS | ID: lil-501111
7.
São Paulo; BEST SELLER; 1989. 475 p.
Monography in Portuguese | HomeoIndex (homeopathy) | ID: hom-7979
SELECTION OF CITATIONS
SEARCH DETAIL