Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Toxicol Environ Health A ; 84(18): 761-768, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34180377

ABSTRACT

Dipyrone or metamizole is one of the most frequently used analgesic worldwide. Despite its widespread use, this drug may exert genotoxic and cytotoxic effects on lymphocytes. Therefore, studies with therapeutic agents that may provide protection against these effects are important. The homeopathic compound Canova® (CA) appears to be a beneficial candidate for preventing DNA damage and cellular lethality, since this compound acts as an immunomodulator associated with cytoprotective actions. Hence, the aim of the present investigation was to determine the potential cytoprotective effects of CA using cell line VERO as a model. VERO cells were incubated with sodium dipyrone and subsequently subject to the comet, apoptosis and immunocytochemistry assays. Data demonstrated that sodium dipyrone induced an increase in DNA damage index (DI) employing the comet assay. However, when VERO cells were co-treated with CA at the three concentrations studied, a significant reduction in DI was observed, indicating an antigenotoxic effect attributed to CA. Further dipyrone induced an elevation in %apoptosis at 24 and 48 hr. However, when dipyrone was co-incubated with CA, a significant reduction in %apoptosis was noted at the three concentrations of CA employed. Results from immunocytochemical analysis showed a rise in the expression of caspase 8 and cytochrome C when cells were exposed to dipyrone. In contrast, co-treatment of dipyrone and CA significantly reduced the effect of dipyrone. Therefore, evidence indicated that CA acted as an anticytotoxic and antigenotoxic agent counteracting damage induced by dipyrone.


Subject(s)
Crotalid Venoms/pharmacology , Cryoprotective Agents/pharmacology , Dipyrone/adverse effects , Materia Medica/pharmacology , Plant Extracts/pharmacology , Animals , Apoptosis , Chlorocebus aethiops , Comet Assay , Immunohistochemistry , Vero Cells
2.
Zhong Xi Yi Jie He Xue Bao ; 10(3): 337-46, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22409925

ABSTRACT

OBJECTIVE: To examine to what degree an ultra-highly diluted homeopathic remedy, Arnica Montana 30C (AM-30C), used in the treatment of shock and injury, can modulate the expression of nucleotide excision repair genes in Escherichia coli exposed to ultraviolet (UV) irradiation. METHODS: E. coli were cultured to their log phase in a standard Luria-Bertani medium and then exposed to sublethal doses of UV irradiation at 25 and 50 J/m(2) for 22.5 and 45 s, respectively. The UV-exposed bacteria were then supplemented with either AM-30C (drug) or placebo (P-30C). The drug-treated and placebo-treated bacteria were subjected to assay for DNA damage and oxidative stress 90 min after UV exposure. Several protocols like comet assay, gel electrophoresis for DNA ladder and intracellular reactive oxygen species (ROS) generation, and biomarker measurement like superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were conducted. The mRNA expressions of the excision repair genes like ultraviolet repair uvrA, B and C genes (or also known as excision repair genes) were estimated by reverse transcription-polymerase chain reaction method. RESULTS: The UV-exposed bacteria showed DNA damage and oxidative stress, as revealed by an increase in ROS generation, and a decrease in SOD, CAT and GSH activities. As compared to placebo, the AM-30C-treated bacteria showed less DNA damage and oxidative stress as manifested by a decrease in ROS generation, and an increase in SOD, CAT and GSH activities. AM-30C also up-regulated the expression of repair genes as compared to the control. CONCLUSION: AM-30C helped repair the DNA damage through up-regulation of repair genes and also ameliorated the oxidative stress through the reduction of ROS generation and suitable modulation of anti-oxidative stress enzymes.


Subject(s)
Arnica , DNA Damage/drug effects , DNA Repair/genetics , Escherichia coli/drug effects , Homeopathy , Catalase/metabolism , Comet Assay , Escherichia coli/radiation effects , Glutathione/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Ultraviolet Rays
3.
Colloids Surf B Biointerfaces ; 101: 325-36, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23010037

ABSTRACT

The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer.


Subject(s)
Cell Division/drug effects , Cell Survival/drug effects , G2 Phase/drug effects , Gelsemium/chemistry , Hydrastis/chemistry , Nanoparticles/chemistry , Phytolacca dodecandra/chemistry , Silver/chemistry , Thuja/chemistry , Biphenyl Compounds/chemistry , Cell Line , Circular Dichroism , Comet Assay , DNA Damage , Escherichia coli/drug effects , Ethanol , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Particle Size , Picrates/chemistry , Real-Time Polymerase Chain Reaction , Silver Nitrate/chemistry , Solvents , Spectrophotometry, Ultraviolet , X-Ray Diffraction
4.
Food Chem Toxicol ; 50(12): 4412-20, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22982473

ABSTRACT

BACKGROUND: Canova activates macrophages and indirectly induces lymphocyte proliferation. Here we evaluated the effects of Canova in cyclophosphamide-treated non-human primates. METHODS: Twelve Cebus apella were evaluated. Four animals were treated with Canova only. Eight animals were treated with two doses of cyclophosphamide (50 mg/kg) and four of these animals received Canova. Body weight, biochemistry and hematologic analyses were performed for 40 days. Micronucleus and comet assays were performed for the evaluation of DNA damage. RESULTS: We observed that cyclophosphamide induced abnormal WBC count in all animals. However, the group treated with cyclophosphamide plus Canova presented a higher leukocyte count than that which received only cyclophosphamide. Cyclophosphamide induced micronucleus and DNA damage in all animals. The frequency of these alterations was significantly lower in the Canova group than in the group without this medicine. CONCLUSIONS: Our results demonstrated that Canova treatment minimizes cyclophosphamide myelotoxicity in C. apella.


Subject(s)
Cyclophosphamide/adverse effects , Materia Medica/pharmacology , Animals , Cebus , Cell Proliferation/drug effects , Comet Assay/methods , DNA Damage/drug effects , Homeopathy , Leukocytes/drug effects , Leukocytes/pathology , Lymphocyte Activation/drug effects , Macrophages/drug effects , Male , Micronucleus Tests/methods
5.
Asian Pac J Cancer Prev ; 9(4): 763-9, 2008.
Article in English | MEDLINE | ID: mdl-19256773

ABSTRACT

Ruta graveolens belonging to family Rutaceae has long been traditionally used as a medicinal plant as well as a flavoring agent in food. However, very little data are available on the toxicity of the plant. This report presents evidence on the genotoxic and clastogenic potential of an extract of Ruta graveolens and Ruta 200C, a homeopathic preparation. Various types of chromosomal aberrations were noted in bone marrow cells after treatment. The percentage of aberrated cells in the 400mg/kgb.wt extract administered group was found to be 21% and with 1,000 mg/kg.b.wt it was 31%. The value for the Ruta 200C treated group was also elevated to 23% as compared to the 3%for untreated animals. In addition, bone marrow cells had higher incidence of micronuclei induction when treated with the extract (400 mg and 1,000 mg/kg body weight) and Ruta 200C for 30 days. Administration of the extract (1,000 mg/kg.b.wt) over a period of 30 days also resulted in damage to cellular DNA as evidenced by comet formation where the comet parameters such as percentage DNA in tail, tail length, tail moment of the bone marrow cells were increased several fold over control values. The comet tail moment of the bone marrow cells increased from 4.5 to 50.2 after the extract treatment. Administration of Ruta 200C for 5 consecutive days increased the tail moment to 11.7. These results indicate that Ruta graveolens and Ruta 200C may induce genotoxicity in animals.


Subject(s)
Bone Marrow Cells/drug effects , Mutagens/toxicity , Plant Extracts/toxicity , Plant Preparations/toxicity , Ruta/toxicity , Analysis of Variance , Animals , Bone Marrow Cells/pathology , Cells, Cultured , Chromosome Aberrations/chemically induced , Comet Assay , DNA Damage , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Homeopathy , Mice , Mutagens/pharmacology , Plants, Medicinal , Probability , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL