RESUMO
The basic helix-loop-helix (bHLH) gene family is a crucial regulator in plants, orchestrating various developmental processes, particularly flower formation, and mediating responses to hormonal signals. The molecular mechanism of bamboo flowering regulation remains unresolved, limiting bamboo breeding efforts. In this study, we identified 309 bHLH genes and divided them into 23 subfamilies. Structural analysis revealed that proteins in specific DlbHLH subfamilies are highly conserved. Collinearity analysis indicates that the amplification of the DlbHLH gene family primarily occurs through segmental duplications. The structural diversity of these duplicated genes may account for their functional variability. Many DlbHLHs are expressed during flower development, indicating the bHLH gene's significant role in this process. In the promoter region of DlbHLHs, different homeopathic elements involved in light response and hormone response co-exist, indicating that DlbHLHs are related to the regulation of the flower development of D. latiflorus.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Flores , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Flores/genética , Flores/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Calycanthaceae/genética , Calycanthaceae/metabolismo , Regiões Promotoras GenéticasRESUMO
GDP-L-galactose phosphorylase (GGP) is a key rate-limiting enzyme in plant ascorbic acid synthesis, which plays an important role in plant growth and development as well as stress response. However, the presence of GGP and its function in potato and pepper are not known. In this study, we first identified two GGP genes in each potato and pepper genomes using a genome-wide search approach. We then analyzed their physicochemical properties, conserved domains, protein structures and phylogenetic relationships. Phylogenetic tree analysis revealed that members of the potato and pepper GGP gene families are related to eggplant (Solanum melongena L.), Arabidopsis (Arabidopsis thaliana L.), tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.), with tomato being the most closely related. The promoter sequences mainly contain homeopathic elements such as light-responsive, hormone-responsive and stress-responsive, with light-responsive elements being the most abundant. By analyzing the structure of the genes, it was found that there is no transmembrane structure or signal peptide in the GGP gene family of potatoes and peppers, and that all of its members are hydrophilic proteins. The expression profiles of different tissues show that StGGP1 has the highest expression levels in leaves, StGGP2 has the highest expression levels in stamens, and CaGGPs have the highest expression levels in the early stages of fruit development (Dev1). It was found that StGGPs and CaGGPs genes showed different response to phytohormones and abiotic stresses. Abscisic acid (ABA) treatment induced the most significant change in the expression of StGGPs, while the expression of CaGGPs showed the most pronounced change under methyl jasmonate (MeJA) treatment. StGGPs responded mainly to dark treatment, whereas CaGGPs responded mainly to NaCl stress. These results provide an important basis for a detailed study about the functions of GGP homologous genes in potato and pepper in response to abiotic stresses.
Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras GenéticasRESUMO
Kinesin, as a member of the molecular motor protein superfamily, plays an essential function in various plants' developmental processes. Especially at the early stages of plant growth, including influences on plants' growth rate, yield, and quality. In this study, we did a genome-wide identification and expression profile analysis of the kinesin family in barley. Forty-two HvKINs were identified and screened from the barley genome, and a generated phylogenetic tree was used to compare the evolutionary relationships between Rice and Arabidopsis. The protein structure prediction, physicochemical properties, and bioinformatics of the HvKINs were also dissected. Our results reveal the important regulatory roles of HvKIN genes in barley growth. We found many cis- elements related to GA3 and ABA in homeopathic elements of the HvKIN gene and verified them by QRT-PCR, indicating their potential role in the barley kinesin family. The current study revealed the biological functions of barley kinesin genes in barley and will aid in further investigating the kinesin in other plant species.
Assuntos
Arabidopsis , Hordeum , Cinesinas/genética , Cinesinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Família Multigênica , Arabidopsis/genéticaRESUMO
Treatment of opium poppy (Papaver somniferum L.) cell cultures with autoclaved mycelial homogenates of Botrytis sp. resulted in the accumulation of sanguinarine. Elicitor treatment also caused a rapid and transient induction in the activity of tyrosine/dopa decarboxylase (TYDC, EC 4.1.1.25), which catalyzes the conversion of L-tyrosine and L-dopa to tyramine and dopamine, respectively, the first steps in sanguinarine biosynthesis. TYDC genes were differentially expressed in response to elicitor treatment. TYDC1-like mRNA levels were induced rapidly but declined to near baseline levels within 5 h. In contrast, TYDC2-like transcript levels increased more slowly but were sustained for an extended period. Induction of TYDC mRNAs preceded that of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) mRNAs. An elicitor preparation from Pythium aphanidermatum was less effective in the induction of TYDC mRNA levels and alkaloid accumulation; however, both elicitors equally induced accumulation of PAL transcripts. In contrast, treatment with methyl jasmonate resulted in an induction of TYDC but not PAL mRNAs. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and the protein kinase inhibitor staurosporine partially blocked the fungal elicitor-induced accumulation of sanguinarine. However, only staurosporine and okadaic acid, an inhibitor of protein phosphatases 1 and 2A, blocked the induction of TYDC1-like transcript levels, but they did not block the induction of TYDC2-like or PAL transcript levels. These data suggest that activation mechanisms for PAL, TYDC, and some later sanguinarine biosynthetic enzymes are uncoupled.