Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Homeopatia

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses.

Jackwood, Mark W.
Avian Dis ; 50(3): 315-20, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17039827
In February 2003, a severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in Guangdong Province, China, and caused an epidemic that had severe impact on public health, travel, and economic trade. Coronaviruses are worldwide in distribution, highly infectious, and extremely difficult to control because they have extensive genetic diversity, a short generation time, and a high mutation rate. They can cause respiratory, enteric, and in some cases hepatic and neurological diseases in a wide variety of animals and humans. An enormous, previously unrecognized reservoir of coronaviruses exists among animals. Because coronaviruses have been shown, both experimentally and in nature, to undergo genetic mutations and recombination at a rate similar to that of influenza viruses, it is not surprising that zoonosis and host switching that leads to epidemic diseases have occurred among coronaviruses. Analysis of coronavirus genomic sequence data indicates that SARS-CoV emerged from an animal reservoir. Scientists examining coronavirus isolates from a variety of animals in and around Guangdong Province reported that SARS-CoV has similarities with many different coronaviruses including avian coronaviruses and SARS-CoV-like viruses from a variety of mammals found in live-animal markets. Although a SARS-like coronavirus isolated from a bat is thought to be the progenitor of SARS-CoV, a lack of genomic sequences for the animal coronaviruses has prevented elucidation of the true origin of SARS-CoV. Sequence analysis of SARS-CoV shows that the 5' polymerase gene has a mammalian ancestry; whereas the 3' end structural genes (excluding the spike glycoprotein) have an avian origin. Spike glycoprotein, the host cell attachment viral surface protein, was shown to be a mosaic of feline coronavirus and avian coronavirus sequences resulting from a recombination event. Based on phylogenetic analysis designed to elucidate evolutionary links among viruses, SARS-CoV is believed to have branched from the modern Group 2 coronaviruses, suggesting that it evolved relatively rapidly. This is significant because SARS-CoV is likely still circulating in an animal reservoir (or reservoirs) and has the potential to quickly emerge and cause a new epidemic.
Selo DaSilva