Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Environ Monit Assess ; 196(5): 436, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38589724

ABSTRACT

Wadi El-Natrun is one of the most observable geomorphological features in the North-Western Desert of Egypt; it contains several old saline and saline soda lakes. This study investigates physicochemical and biochemical characteristics and estimates the total phenolic content (TPC), total flavonoid content (TVC), and bioactivities of sediment, cyanobacteria, and brine shrimp (Artemia salina) in soda lakes, i.e., El-Hamra Lake 1 (H1) and El-Hamra Lake 2 (H2). These soda lakes are unique extreme ecosystems characterized by high pH (> 9.3), high alkalinity, and salinity. Some extremophilic microorganisms are hosted in this ecosystem. The results revealed that the chemical water type of studied lakes is soda-saline lakes according to the calculated percentage sequence of major cations and anions. Sodium ranked first among major cations with an abundance ratio of e% 58, while chloride came first among anions with an abundance ratio of e% 71, and bicarbonate and carbonate occupied the last rank with an abundance of 6%. The biochemical investigations showed that TPC and TVC are present in concern contents of sediment, cyanobacteria, and brine shrimp (A. salina) which contribute 89% of antioxidant capacity and antimicrobial activities. Thus, this study helps better understand the chemical and biochemical adaptations in soda lake ecosystems and explores natural sources with potential applications in antioxidant-rich products and environmental conservation efforts.


Subject(s)
Ecosystem , Lakes , Lakes/chemistry , Egypt , Antioxidants , Environmental Monitoring/methods , Anions , Cations
2.
Environ Sci Pollut Res Int ; 28(38): 53365-53378, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34031835

ABSTRACT

Two different extremophilic films were used as natural biosorbents to remove Cu(II), Ni(II), and Pb(II) from aqueous solutions. Surface area, scanning electron microscopy imaging, and Fourier transformation infrared spectroscopy were used to characterize the surfaces of the biosorbents. The results indicated high affinity of the biosorbents to remove Pb(II), Cu(II), and Ni(II), with adsorption rates ranging from 73.6 to 100% for both biosorbents. The biosorbents succeed in removing the metal ions from aqueous mixtures in the following order: Pb(II) > Cu(II) > Ni(II). The maximum removal rates of metal ions were achieved at pH 6, contact time of 150 min, biosorbent dose of 2.5 g/L, and metal ion concentration of 50 mg/L. The isothermal studies showed that both Langmuir and Freundlich models well expressed the adsorption process. Kinetically, the pseudo-second-order reaction better expressed the type of reaction than the pseudo-first-order reaction.


Subject(s)
Extremophiles , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Solutions , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL