Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ultrastruct Pathol ; 48(4): 274-296, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38946300

ABSTRACT

Sepsis denotes a serious high mortality concern. The study was designed to evaluate the effect of mesenchymal stem cell exosomes (MSC-exosomes) on the evolution of the animal model of sepsis. In this study, 36 rats were distributed into three groups, (I) controls, (II) LPS-treated, and (III) LPS+MSC-EVs. Sepsis was simulated by administering E. coli-LPS to the laboratory animals. Group III was given MSC-exosomes four hours after the LPS injection. Forty-eight hours later rats were sacrificed. Ileum samples were excised, and processed for the histological assessment, immunohistochemical identification of CD44, and inducible nitric oxide synthase (iNOS). Ileum homogenate was used to estimate tumor necrosis factor α (TNF α) besides Cyclooxygenase-2 (COX 2). PCR was used for the detection of interleukin 1α (IL­1α), and interleukin 17 (IL­17). Statistical and morphometrical analysis was done. The LPS-treated group showed increased TNF-α, IL­1α, IL­17, and decreased COX 2. LPS administration led to cytoplasmic vacuolization of enterocytes, an increase in the vasculature, and cellular infiltrations invaded the lamina propria. There was a significant rise in goblet cells and the proportion of collagen fibers. Ultrastructurally, the enterocytes displayed nuclear irregularity, rough endoplasmic reticulum (rER) dilatation, and increased mitochondria number. Sepsis induces a significant increase in iNOS and a decrease in CD44 immune expressions. LPS+MSC-EVs group restored normal ileum structure and revealed a significant elevation in CD44 and a reduction in iNOS immunoreactions. LPS-sepsis induced an obvious ileum inflammatory deterioration ameliorated by MSC-exosomes, mostly through their antioxidant, anti-inflammatory, and anti-apoptotic properties.


Subject(s)
Disease Models, Animal , Exosomes , Ileum , Mesenchymal Stem Cells , Sepsis , Animals , Sepsis/complications , Rats , Ileum/pathology , Exosomes/metabolism , Male , Immunohistochemistry , Rats, Wistar , Nitric Oxide Synthase Type II/metabolism
2.
Ultrastruct Pathol ; 47(4): 339-363, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37132546

ABSTRACT

The unlimited use of nanoparticles (NPs) results in toxic impacts on different tissues. The current study aimed to compare the adverse effects of AgNPs and TiO2NPs on the parotid gland of adult male albino rats as regards the histopathological, immunohistochemical, and biochemical changes, exploring the possible underlying mechanisms and the degree of improvement after cessation of administration. Fifty-four adult male albino rats were divided into control group (I), AgNPs-injected group (II), and TiO2NPs-injected group (III). We measured the levels of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6) in the serum, and levels of MDA and GSH in parotid tissue homogenate. Quantitative real-time polymerase-chain reaction (qRT-PCR) was used to measure the expression levels of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1-α), nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), mouse double minute 2 (MDM2), Caspase-3 Col1a1, and Occludin. Parotid tissue sections were examined by light microscope (Hematoxylin & Eosin and Mallory trichrome stains), electron microscope, and immunohistochemical examination of CD68 and anti-caspase-3 antibodies. Both NPs severely affected the acinar cells and damaged the tight junction between them by enhancing expression of the inflammatory cytokines, inducing oxidative stress, and disturbing the expression levels of the studied genes. They also stimulated fibrosis, acinar cell apoptosis, and inflammatory cells infiltration in parotid tissue. TiO2NPs effects were less severe than AgNPs. Cessation of exposure to both NPs, ameliorated the biochemical and structural findings with more improvement in TiO2NPs withdrawal. In conclusion: AgNPs and TiO2NPs adversely affected the parotid gland, but TiO2NPs were less toxic than AgNPs.


Subject(s)
Metal Nanoparticles , Nanoparticles , Animals , Male , Mice , Metal Nanoparticles/toxicity , Parotid Gland , Silver/toxicity , Titanium/toxicity , Rats
3.
Cell Tissue Res ; 389(2): 201-217, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35551479

ABSTRACT

Ozone (O3) gas is a double-sided weapon. It provides a shield that protects life on earth from the harmful ultraviolet (UV) rays, but ground-level O3 is considered an urban air pollutant. So, a rat model of chronic O3 inhalation was established to assess the biochemical and morphological alterations in the lung tissue and to investigate the ameliorative effects of bone marrow-derived mesenchymal stem cells (BMSCs) with or without hypoxia pre-treatment. Forty-two adult male albino rats were divided into four groups: control, ozone-exposed, normoxic BMSC-treated, and hypoxic BMSC-treated groups. Lung tissue sections were processed for light and electron microscope examination, immunohistochemical staining for caspase 3, and iNOS. Quantitative real-time PCR for IL-1α, IL-17, TNF-α, and Nrf2 mRNA gene expression were also performed. Chronic O3 exposure caused elevated inflammatory cytokines and decreased antioxidant Nrf2 mRNA expression. Marked morphological alterations with increased collagen deposition and elevated apoptotic markers and iNOS were evident. BMSC treatment showed immunomodulatory (decreased inflammatory cytokine gene expression), antioxidant (increased Nrf2 expression and decreased iNOS), and anti-apoptotic (decreased caspase3 expression) effects. Consequently, ameliorated lung morphology with diminished collagen deposition was observed. Hypoxia pretreatment enhanced BMSC survival by MTT assay. It also augmented the previously mentioned effects of BMSCs on the lung tissue as proved by statistical analysis. Lung morphology was similar to that of control group. In conclusion, hypoxia pretreatment represents a valuable intervention to enhance the effects of MSCs on chronic lung injury.


Subject(s)
Lung Diseases , Lung Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Ozone , Male , Antioxidants/metabolism , Bone Marrow Cells , Collagen/metabolism , Hypoxia/metabolism , Lung Diseases/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/therapy , NF-E2-Related Factor 2/metabolism , Ozone/metabolism , RNA, Messenger/metabolism , Animals , Rats
4.
Ultrastruct Pathol ; 46(3): 268-284, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35471163

ABSTRACT

Exposure to the deleterious effects of silver nanoparticles (AgNPs) is inevitable due to their wide use in medicine and daily life. The current study aimed to delineate the histomorphological changes and the molecular mechanisms underlying the ameliorative effect of Resveratrol (RSV) on rats' livers exposed to AgNPs. Fifty healthy adult male Wistar albino rats were divided into four groups: control, AgNPs-exposed, RSV-treated after AgNPs exposure, and recovery groups. Liver sections were examined by light and electron microscopes, and immunohistochemistry was performed for detection of activated caspase3 and TNFα. Serum ALT and AST, plasma levels of TNFα, IL-6, GSH and SOD were measured. mRNA expression of SIRT1, ADORA3, PAI, CDK1, Nrf2 and NFκB genes in liver tissue homogenate was performed using qRT-PCR. AgNPs-exposure for 28 days caused marked liver tissue damage with trapping in hepatocytes and Kupffer cells, while RSV treatment ameliorated liver ultrastructure and function. Our results clarified the molecular basis of RSV ameliorative effect on liver tissue by significant upregulation of SIRT1-NrF2 signaling pathway with increased levels of the antioxidant GSH and SOD, which represent the antioxidant effect of RSV. Significant upregulation of the protective ADORA3 with downregulation of the proinflammatory PAI-1 and NFκB mRNA expression levels besides decreased plasma levels of TNFα, IL-6 and decreased immunoexpression of TNFα in liver tissue, represent the anti-inflammatory effect of RSV. In addition, decreased immunoexpression of caspase3 and downregulation of CDK1 expression, represent its antiapoptotic effect. In conclusion: RSV ameliorates AgNPs-induced liver damage by antioxidant, anti-inflammatory and antiapoptotic effects.Abbreviations: AgNPs: Silver nanoparticles, RSV: Resveratrol, ROS: Reactive oxygen species, ESR: Electron spin resonance, DMPO: 5,5-Dimethyl-1-pyrroline-N-oxide, H2O2: Hydrogen peroxide, SOD: Superoxide dismutase, CAT: Catalase, GPx: Glutathione peroxidase, MPTP: Methyl-4-phenyl-1.2.3.6-tetrahydropyridine, MDA: Malondialdehyde, TNF: Tumor necrosis factor, GSH: Glutathione, Nrf2: Nuclear factor-erythroid 2-related factor 2, ARE: Antioxidant response elements, KEAP1: Kelch-1ike ECH-associated protein l, AMPK: AMP-activated protein kinase, HO-1: Heme oxygenase-1, NF-κB: Nuclear factor-kappa B, SIRT1: Sirtuins, FOXO: Forkhead box, UCP2: Uncoupling protein 2, STZ: Streptozotocin nicotinamide, HSC: hepatic stellate cells, ECM: extracellular matrix.


Subject(s)
Metal Nanoparticles , NF-E2-Related Factor 2 , Animals , Antioxidants/pharmacology , Glutathione/metabolism , Glutathione/pharmacology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Interleukin-6 , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Male , Metal Nanoparticles/toxicity , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-kappa B/metabolism , NF-kappa B/pharmacology , Oxidative Stress , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Rats , Rats, Wistar , Resveratrol/pharmacology , Silver/toxicity , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Ultrastruct Pathol ; 44(4-6): 342-358, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32600082

ABSTRACT

Titanium dioxide nanoparticles (TiO2NPs) have been widely used in numerous applications and enter the human body through different routes. This study aimed to investigate the effect of intraperitoneal TiO2NPs on the histological and biochemical structure of rat pancreas. Fifty adult male albino rats were divided into four groups. Group I (control) was equally divided into two subgroups. Groups II, III, and IV: rats received intraperitoneal TiO2NPs for 7, 14, and 45 days, respectively. Blood samples were taken for the estimation of blood glucose, serum insulin, serum α-amylase, and lipase activity levels. Sections of the pancreas were processed for light, electron microscope examination, and immunohistochemical detection of insulin protein. Other parts were exposed to Real-Time Polymerase Chain Reaction for Bax, Bcl-2, SOD, and GST mRNA gene expression. Results showed pancreatic tissue damage, including acinar and islet cells, which became worse with increased duration of exposure to TiO2NPs. Decreased immune expression of the insulin protein together with decreased serum insulin and increased blood glucose levels indicated the alteration of ß cells. Decreased serum α-amylase and lipase activities indicated alteration of acinar cells. Increased Bax and decreased Bcl-2 mRNA expression levels showed the apoptotic effect of TiO2NPs caused by oxidative stress and evidenced by a significant reduction in the mRNA expression of SOD and GST in a duration-dependent manner. In conclusion: the present study stated that TiO2NPs exposure for long durations had toxic effects on both exocrine and endocrine pancreas mediated by apoptotic and oxidative stress pathways.


Subject(s)
Metal Nanoparticles/toxicity , Pancreas/drug effects , Titanium/toxicity , Animals , Male , Oxidative Stress/drug effects , Rats
6.
Mol Cell Biochem ; 428(1-2): 179-191, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28120211

ABSTRACT

Currently, azoospermia is one of the most common diseases of male infertility. Stem cell research is the new hope for novel therapy with a higher degree of safety and lower cost. This study aimed to investigate the effect of umbilical cord blood-derived stem cells (" and mesenchymal "UCB-MSCs") and mono-cell layer implanted into the induced azoospermic mice testis. Stem cells were isolated from umbilical cord blood and CD34+ve cells were separated from negative one by Mini MACs column. At 5th week after single injection of busulfan, stained mesenchymal (CD34-ve), hematopoietic stem cells (CD34+ve) and their conjugate (mono-cell layer) were injected locally into testis. At the end of the study, MSCs group showed that mRNA levels of genes related to meiosis (Vasa, SCP3, and PgK2) were increased with significant decrease of FSH and LH levels, compared to control group. Histologically, most of the tubules restored normal architecture. In contrast, HSCs and mono-cell layer groups showed statically insignificant change of FSH, LH, and gene expression, compared to control group. Histologically, distorted seminiferous tubules, with reduction in sperm content, and interstitial mononuclear cellular infiltration were seen. There was significant increase in the optical density of PCNA immune reaction in MSCs group than azoospermia, HSCs, and mono-cell layer, while there was non-significant difference between MSCs and control group. The present study suggested that injection of MSCs into chemotherapeutic-induced azoospermia in mice improved testicular failure; histologically and functionally, by restoration of spermatogenic gene expression while HSC and mono-cell layer showed no effect on spermatogenesis added to that mono-cell layer may induce testicular tissue damage.


Subject(s)
Antigens, CD34/metabolism , Azoospermia/therapy , Cord Blood Stem Cell Transplantation/methods , Fetal Blood/cytology , Meiosis , Animals , Azoospermia/chemically induced , Azoospermia/genetics , Disease Models, Animal , Fetal Blood/immunology , Follicle Stimulating Hormone/metabolism , Gene Expression Regulation , Humans , Luteinizing Hormone/metabolism , Male , Mice
7.
Curr Mol Pharmacol ; 16(6): 664-681, 2023.
Article in English | MEDLINE | ID: mdl-36056862

ABSTRACT

OBJECTIVES: The scientific research community devotes stupendous efforts to control the arguable counterbalance between the undesirable effects of hormone replacement therapy (HRT) and post-menopausal syndrome. The recent emergence of 3rd generation selective estrogen receptor modulators and phytoestrogens has provided a promising alternative to HRT. Hence, we assessed the potential effects of combined Bazedoxifene and Genistein on hippocampal neuro-alterations induced by experimental ovariectomy. METHODS: For this purpose, we utilized forty-eight healthy sexually mature female Wistar rats assorted to control, ovariectomy (OVX), Genistein-treated ovariectomized (OVX+GEN) and Bazedoxifene and Genistein-treated ovariectomized (OVX+BZA+GEN) groups. Hippocampi samples from various groups were examined by H&E, silver stains and immunohistochemical examination for calbindin-D28k, GFAP, and BAX proteins. We also assessed hippocampal mRNA expression of ERK, CREB, BDNF and TrkB. RESULTS: Our histopathological results confirmed that combined BZA+GEN induced restoration of hippocampal neuronal architecture, significant reduction of GFAP and BAX mean area % and significant upregulation of calbindin-D28k immunoexpression. Furthermore, we observed significant upregulation of ERK, CREB, BDNF and TrkB mRNA expression in the BZA+GEN group compared to the OVX group. CONCLUSION: Taken together, our findings have provided a comprehensive assessment of histological, immunohistochemical and cyto-molecular basis of combined Genistein and Bazedoxifene ameliorative impacts on hippocampal neuro-alterations of OVX rats via upregulation of Calbindin, CERB, BDNF, Trk-B and ERK neuronal expression.


Subject(s)
Brain-Derived Neurotrophic Factor , Genistein , Rats , Female , Animals , Humans , Genistein/pharmacology , Genistein/therapeutic use , Brain-Derived Neurotrophic Factor/pharmacology , bcl-2-Associated X Protein/pharmacology , Bone Density , Calbindin 1 , Rats, Wistar , Signal Transduction , Ovariectomy/adverse effects , Hippocampus , RNA, Messenger
8.
Tissue Barriers ; 11(3): 2115273, 2023 07 03.
Article in English | MEDLINE | ID: mdl-35996208

ABSTRACT

Engineered nanomaterials induce hazardous effects at the cellular and molecular levels. We investigated different mechanisms underlying the neurotoxic potential of zinc oxide nanoparticles (ZnONPs) on cerebellar tissue and clarified the ameliorative role of Quercetin supplementation. Forty adult male albino rats were divided into control group (I), ZnONPs-exposed group (II), and ZnONPs and Quercetin group (III). Oxidative stress biomarkers (MDA & TOS), antioxidant biomarkers (SOD, GSH, GR, and TAC), serum interleukins (IL-1ß, IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) were measured. Serum micro-RNA (miRNA): miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-3p expression levels were quantified by real-time quantitative polymerase-chain reaction (RT-QPCR). Cerebellar tissue sections were stained with Hematoxylin & Eosin and Silver stains and examined microscopically. Expression levels of Calbindin D28k, GFAP, and BAX proteins in cerebellar tissue were detected by immunohistochemistry. Quercetin supplementation lowered oxidative stress biomarkers levels and ameliorated the antioxidant parameters that were decreased by ZnONPs. No significant differences in GR activity were detected between the study groups. ZnONPs significantly increased serum IL-1ß, IL-6, IL-8, and TNF-α which were improved with Quercetin. Serum miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-p expression levels showed significant increase in ZnONPs group, while no significant difference was observed between Quercetin-treated group and control group. ZnONPs markedly impaired cerebellar tissue structure with decreased levels of calbindin D28k, increased BAX and GFAP expression. Quercetin supplementation ameliorated cerebellar tissue apoptosis, gliosis and improved calbindin levels. In conclusion: Quercetin supplementation ameliorated cerebellar neurotoxicity induced by ZnONPs at cellular and molecular basis by different studied mechanisms.Abbreviations: NPs: Nanoparticles, ROS: reactive oxygen species, ZnONPs: Zinc oxide nanoparticles, AgNPs: silver nanoparticles, BBB: blood-brain barrier, ncRNAs: Non-coding RNAs, miRNA: Micro RNA, DMSO: Dimethyl sulfoxide, LPO: lipid peroxidation, MDA: malondialdehyde, TBA: thiobarbituric acid, TOS: total oxidative status, ELISA: enzyme-linked immunosorbent assay, H2O2: hydrogen peroxide, SOD: superoxide dismutase, GR: glutathione reductase, TAC: total antioxidant capacity, IL-1: interleukin-1, TNF: tumor necrosis factor alpha, cDNA: complementary DNA, RT-QPCR: Real-time quantitative polymerase-chain reaction, ABC: Avidin biotin complex technique, DAB: 3', 3-diaminobenzidine, SPSS: Statistical Package for Social Sciences, ANOVA: One way analysis of variance, Tukey's HSD: Tukey's Honestly Significant Difference, GFAP: glial fiberillar acitic protein, iNOS: Inducible nitric oxide synthase, NO: nitric oxide, HO-1: heme oxygenase-1, Nrf2: nuclear factor erythroid 2-related factor 2, NF-B: nuclear factor-B, SCI: spinal cord injury, CB: Calbindin.


Subject(s)
Metal Nanoparticles , MicroRNAs , Neuroprotective Agents , Zinc Oxide , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Zinc Oxide/pharmacology , Zinc Oxide/therapeutic use , Zinc Oxide/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism , Calbindin 1/metabolism , Hydrogen Peroxide/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Silver/metabolism , Superoxide Dismutase/metabolism , Cerebellum/metabolism , MicroRNAs/genetics , Biomarkers
9.
Ann Med Surg (Lond) ; 72: 103168, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934491

ABSTRACT

BACKGROUND: Bile reflux gastropathy is caused by the backward flow of duodenal fluid into the stomach. A retrospective cohort study was performed to declare if the therapeutic biliary interventions cause bile reflux gastropathy, and to estimate its prevalence and risk factors, and to evaluate the gastric mucosa endoscopic and histopathologic changes. METHODS: 62 patients, with epigastric pain and/or dyspeptic symptoms, were grouped into, Group 1 : (34) patients that had undergone cholecystectomy and Group 2 : (28) patients who had undergone at least one of the following procedures for the treatment of benign pathology: endoscopic sphincterotomy and endoscopic stenting. Their ages ranged from 27 to 59 years. All participants had undergone gastroscopy for gastric aspirate analysis as well as gastric mucosa biopsy for histopathological examination. RESULTS: the prevalence of bile reflux gastropathy was (21.34%) after therapeutic biliary interventions with a P-value of 0.000. In both groups, diabetes, obesity, increased gastric bilirubin, and increased gastric pH were risk factors for bile reflux gastropathy (r = 0.27, 0.31, 0.68, 0.59 respectively), while age, sex, epigastric pain, heartburn, vomiting were mot. CONCLUSION: bile reflux gastropathy is common after therapeutic biliary interventions being more among obese and diabetic patients.

SELECTION OF CITATIONS
SEARCH DETAIL