Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
EMBO Rep ; 23(9): e54078, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35861333

ABSTRACT

According to the current consensus, murine neural stem cells (NSCs) apically contacting the lateral ventricle generate differentiated progenitors by rare asymmetric divisions or by relocating to the basal side of the ventricular-subventricular zone (V-SVZ). Both processes will ultimately lead to the generation of adult-born olfactory bulb (OB) interneurons. In contrast to this view, we here find that adult-born OB interneurons largely derive from an additional NSC-type resident in the basal V-SVZ. Despite being both capable of self-renewal and long-term quiescence, apical and basal NSCs differ in Nestin expression, primary cilia extension and frequency of cell division. The expression of Notch-related genes also differs between the two NSC groups, and Notch activation is greatest in apical NSCs. Apical downregulation of Notch-effector Hes1 decreases Notch activation while increasing proliferation across the niche and neurogenesis from apical NSCs. Underscoring their different roles in neurogenesis, lactation-dependent increase in neurogenesis is paralleled by extra activation of basal but not apical NSCs. Thus, basal NSCs support OB neurogenesis, whereas apical NSCs impart Notch-mediated lateral inhibition across the V-SVZ.


Subject(s)
Lateral Ventricles , Neural Stem Cells , Animals , Cell Differentiation/genetics , Female , Lateral Ventricles/metabolism , Mice , Neural Stem Cells/metabolism , Neurogenesis/genetics , Olfactory Bulb/metabolism
2.
Cell Rep ; 40(12): 111360, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130519

ABSTRACT

Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.


Subject(s)
Erythropoietin , Iron Overload , Erythropoiesis/physiology , Erythropoietin/pharmacology , Female , Heme , Hemoglobins , Humans , Iron/metabolism , Pregnancy , Proteome , Sulfur
3.
Stem Cell Reports ; 13(1): 132-146, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31178417

ABSTRACT

In the adult subependymal zone (SEZ), neural stem cells (NSCs) apically contacting the lateral ventricle on activation generate progenitors proliferating at the niche basal side. We here show that Tailless (TLX) coordinates NSC activation and basal progenitor proliferation by repressing the NOTCH effector Hes1. Consistent with this, besides quiescence Hes1 expression also increases on Tlx mutation. Since HES1 levels are higher at the apical SEZ, NOTCH activation is increased in Tlx-/- NSCs, but not in surrounding basal progenitors. Underscoring the causative relationship between higher HES1/NOTCH and increased quiescence, downregulation of Hes1 only in mutant NSCs normalizes NOTCH activation and resumes proliferation and neurogenesis not only in NSCs, but especially in basal progenitors. Since pharmacological blockade of NOTCH signaling also promotes proliferation of basal progenitors, we conclude that TLX, by repressing Hes1 expression, counteracts quiescence and NOTCH activation in NSCs, thereby relieving NOTCH-mediated lateral inhibition of proliferation in basal progenitors.


Subject(s)
Gene Expression Regulation , Lateral Ventricles/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Notch/metabolism , Signal Transduction , Transcription Factor HES-1/genetics , Animals , Cell Differentiation , Cell Lineage/genetics , Cell Proliferation , Cells, Cultured , Fluorescent Antibody Technique , Lateral Ventricles/cytology , Mice , Mice, Knockout , Mutation , Neural Stem Cells/cytology , Neural Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL