Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Environ Sci (China) ; 25(6): 1235-44, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-24191614

ABSTRACT

Enzymatic decolourization of the azo dye, Direct Yellow (DY106) by Cucurbita pepo (courgette) peroxidase (CP) is a complex process, which is greatly affected by pH, temperature, enzyme activity and the concentrations of H2O2 and dye. Courgette peroxidase was extracted and its performance was evaluated by using the free-CP (FCP) and immobilized-CP (ICP) forms in the decolourization of DY106. Immobilization of peroxidase in calcium alginate beads was performed according to a strategy aiming to minimize enzyme leakage and keep its activity at a maximum value by optimizing sodium alginate content, enzyme loading and calcium chloride concentration. The initial conditions at which the highest DY106 decolourization yield was obtained were found at pH 2, temperature 20 degrees C, H2O2 dose 1 mmol/L (FCP) and 100 mmol/L (ICP). The highest decolourization rates were obtained for dye concentrations 50 mg/L (FCP) and 80 mg/L (ICP). Under optimal conditions, the FCP was able to decolorize more than 87% of the dye within 2 min. While with ICP, the decolourization yield was 75% within 15 min. The decolourization and removal of DY106 was proved by UV-Vis analysis. Fourier transform infrared (FT-IR) spectroscopy analysis was also performed on DY106 and enzymatic treatment precipitated byproduct.


Subject(s)
Coloring Agents/metabolism , Cucurbita/enzymology , Enzymes, Immobilized/metabolism , Peroxidases/metabolism , Azo Compounds/metabolism , Biodegradation, Environmental , Naphthalenes/metabolism
2.
Z Naturforsch C J Biosci ; 67(7-8): 429-36, 2012.
Article in English | MEDLINE | ID: mdl-23016283

ABSTRACT

The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolourize textile effluents. This study aims at evaluating the potential of a turnip (Brassica rapa) peroxidase (TP) preparation in the discolouration of textile azo dyes and effluents. An azo dye, Congo Red (CR), was used as a model pollutant for treatment by the enzyme. The effects of various operating conditions like pH value, temperature, initial dye and hydrogen peroxide concentrations, contact time, and enzyme concentration were evaluated. The optimal conditions for maximal colour removal were at pH 2.0, 40 degrees C, 50 mM hydrogen peroxide, 50 mg/l CR dye, and TP activity of 0.45 U/ml within 10 min of incubation time. Analysis of the by-products from the enzymatic treatment by UV-Vis and IR spectroscopy showed no residual compounds in the aqueous phase and a precipitate of polymeric nature.


Subject(s)
Brassica napus/metabolism , Congo Red/metabolism , Peroxidases/metabolism , Brassica napus/enzymology , Hydrogen-Ion Concentration , Temperature
3.
Sci Total Environ ; 806(Pt 2): 150500, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34852426

ABSTRACT

The fast-growing consumer demand drives industrial process intensification, which subsequently creates a significant amount of waste. These products are discharged into the environment and can affect the quality of air, degrade water streams, and alter soil characteristics. Waste materials may contain polluting agents that are especially harmful to human health and the ecosystem, such as the synthetic dyes, phenolic agents, polycyclic aromatic hydrocarbons, volatile organic compounds, polychlorinated biphenyls, pesticides and drug substances. Peroxidases are a class oxidoreductases capable of performing a wide variety of oxidation reactions, ranging from reactions driven by radical mechanisms, to oxygen insertion into CH bonds, and two-electron substrate oxidation. This versatility in the mode of action presents peroxidases as an interesting alternative in cleaning the environment. Herein, an effort has been made to describe mechanisms governing biochemical process of peroxidase enzymes while referring to H2O2/substrate stoichiometry and metabolite products. Plant peroxidases including horseradish peroxidase (HRP), soybean peroxidase (SBP), turnip and bitter gourd peroxidases have revealed notable biocatalytic potentialities in the degradation of toxic products. On the other hand, an introduction on the role played by ligninolytic enzymes such as manganese peroxidase (MnP) and lignin peroxidase (LiP) in the valorization of lignocellulosic materials is addressed. Moreover, sensitivity and selectivity of peroxidase-based biosensors found use in the quantitation of constituents and the development of diagnostic kits. The general merits of peroxidases and some key prospective applications have been outlined as concluding remarks.


Subject(s)
Lignin , Peroxidase , Biodegradation, Environmental , Coloring Agents , Ecosystem , Humans , Hydrogen Peroxide , Peroxidases
4.
J Hazard Mater ; 403: 124021, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265046

ABSTRACT

This work aimed at presenting a green method using a new source of peroxidase isolated from Raphanus sativus var. niger (RSVNP) in immobilized form, for the treatment of wastewater. To ensure stability and enzymatic activity in the biodegradation process, RSVNP was immobilized as a cross-linked enzyme aggregate (CLEAs). With more than 29% of recovered activity and 85% aggregation yield, acetone was selected as the best precipitating agent. The formed protein aggregates required 2% (v/v) of glutaraldehyde (GA) concentration and a ratio of 9:1 (v/v) enzyme (E) amount to cross-linker (E/GA). Compared to the free enzyme, RSVNP-CLEAs were found more chemically and thermally stable and exhibited good storage stability for more than 8 weeks. In addition, RSVNP-CLEAs were evaluated for their ability to remove phenol and p-cresol from aqueous solution by varying several operating conditions. A maximal yield (98%) of p-cresol conversion was recorded after 40 min; while 92% of phenol was degraded after 1 h duration time. The reusability of RSVNP-CLEAs was tested, displaying 71% degradation of phenol in the third batch carried out and more than 54% was achieved for p-cresol after four successive reuses in the presence of hydrogen peroxide at 2 mM concentration.


Subject(s)
Enzymes, Immobilized , Phenols , Cost-Benefit Analysis , Cross-Linking Reagents , Enzyme Stability , Enzymes, Immobilized/metabolism , Glutaral , Hydrogen-Ion Concentration , Temperature
5.
Environ Technol ; 40(5): 625-632, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29098952

ABSTRACT

Peroxidase from Brassica rapa was immobilized as cross-linked enzyme aggregates (CLEAs) and used to treat air containing phenol as a model molecule of volatile organic compounds (VOCs). Prior to an enzymatic treatment, phenol was absorbed into an aqueous or organic phase (silicone oil) to reach concentrations ranging from 20 to 160 mg/L. The process was carried out by introducing a desired weighing of BRP-CLEAs into preparations and reaction was started by injecting H2O2 solution to the medium. Optimization of the reaction conditions in the organic solvent revealed an optimal contact time of 60 min, 60 mg/L of phenol concentration and 3 mM H2O2, leading to a maximum removal yield of 70% for 3.4 UI/mL of BRP-CLEAs. These results were compared to those obtained in an aqueous medium that showed 90% of degradation yield after 40 min in the following conditions, 90 mg/L of initial phenol amount, 2 mM of H2O2 and 2.5 UI/mL of BRP-CLEAs. Parameters of the Michaelis-Menten model, Km and Vmax, were also determined for the reaction in both phases. Phenol removal by BRP-CLEAs in silicone oil succeeded with 70% of conversion yield. It is promising regarding the transposition of such enzymatic process to hydrophobic VOCs.


Subject(s)
Phenol , Volatile Organic Compounds , Biodegradation, Environmental , Hydrogen Peroxide , Phenols
6.
Chemosphere ; 148: 55-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26802263

ABSTRACT

This study proposes a new technique to treat waste air containing 2-Chlorophenol (2-CP), namely an integrated process coupling absorption of the compound in an organic liquid phase and its enzymatic degradation. Silicone oil (47V20) was used as an organic absorbent to allow the volatile organic compound (VOC) transfer from the gas phase to the liquid phase followed by its degradation by means of Cross-linked Brassica rapa peroxidase (BRP) contained in the organic phase. An evaluation of silicone oil (47V20) absorption capacity towards 2-CP was first accomplished by determining its partition coefficient (H) in this solvent. The air-oil partition coefficient of 2-CP was found equal to 0.136 Pa m(3) mol(-1), which is five times lower than the air-water value (0.619 Pam(3) mol(-1)). The absorbed 2-CP was then subject to enzymatic degradation by cross-linked BRP aggregates (BRP-CLEAs). The degradation step was affected by four parameters (contact time; 2-CP, hydrogen peroxide and enzyme concentrations), which were optimized in order to obtain the highest conversion yield. A maximal conversion yield of 69% and a rate of 1.58 mg L(-1) min(-1)were obtained for 100 min duration time when 2-CP and hydrogen peroxide concentrations were respectively 80 mg L(-1) and 6 mM in the presence of 2.66 UI mL(-1) BRP-CLEAs. The reusability of BRP-CLEAs in silicone oil was assessed, showing promising results since 59% of their initial efficiency remained after three batches.


Subject(s)
Air Pollutants/isolation & purification , Brassica rapa/enzymology , Chlorophenols/isolation & purification , Peroxidase/chemistry , Silicone Oils/chemistry , Volatile Organic Compounds/isolation & purification , Adsorption , Catalysis , Cross-Linking Reagents/chemistry , Glutaral/chemistry , Hydrogen Peroxide/chemistry
7.
Enzyme Res ; 2015: 575618, 2015.
Article in English | MEDLINE | ID: mdl-25734011

ABSTRACT

Enzymatic discoloration of the diazo dye, Congo red (CR), by immobilized plant peroxidase from turnip "Brassica rapa" is investigated. Partially purified turnip peroxidase (TP) was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (D e ) of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate.

8.
J Ind Microbiol Biotechnol ; 35(11): 1303-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18712561

ABSTRACT

Production of biosurfactant by free and alginate-entrapped cells of Pseudomonas fluorescens Migula 1895-DSMZ was investigated using olive oil as the sole carbon and energy source. Biosurfactant synthesis was followed by measuring surface tension and emulsifying index E24 over 5 days at ambient temperature and at neutral pH. Diffusional limitations in alginate beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. Nevertheless, the emulsion stability was improved and fewer by-products interfered with the biosurfactant activity. A decrease in pH down to 5 in the case of immobilized cells was observed during the first 3 days, after which it returned to its initial value. The minimum values of surface tension were 30 and 35 dynes cm(-1) achieved after 40 and 72 h with free and immobilized cells, respectively, while the corresponding maximum E24 values were 67 and 62%, respectively. After separation by acetone precipitation, the biosurfactant showed a rhamnolipid-type in nature, and had a good foaming and emulsifying activities. The critical micellar concentration was found to be 290 mg l(-1). The biosurfactant also showed good stability during exposure to high temperatures (up to 120 degrees C for 15 min), to high salinity (10% NaCl) and to a wide range of pH (4-9).


Subject(s)
Pseudomonas fluorescens/metabolism , Surface-Active Agents/metabolism , Alginates/chemistry , Cells, Immobilized/chemistry , Cells, Immobilized/metabolism , Emulsifying Agents/chemistry , Emulsifying Agents/isolation & purification , Emulsifying Agents/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Kinetics , Olive Oil , Plant Oils/metabolism , Pseudomonas fluorescens/chemistry , Surface Tension , Surface-Active Agents/chemistry , Surface-Active Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL