Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Nature ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991538

ABSTRACT

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5' splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide.

2.
Cell ; 155(5): 1022-33, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24267888

ABSTRACT

Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect noncoding regions. A SNP within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue eyes, and brown hair color. Here, we demonstrate that this SNP lies within an enhancer of IRF4 transcription in melanocytes. The allele associated with this pigmentation phenotype impairs binding of the TFAP2A transcription factor that, together with the melanocyte master regulator MITF, regulates activity of the enhancer. Assays in zebrafish and mice reveal that IRF4 cooperates with MITF to activate expression of Tyrosinase (TYR), an essential enzyme in melanin synthesis. Our findings provide a clear example of a noncoding polymorphism that affects a phenotype by modulating a developmental gene regulatory network.


Subject(s)
Interferon Regulatory Factors/metabolism , Polymorphism, Single Nucleotide , Animals , Base Sequence , Enhancer Elements, Genetic , Humans , Interferon Regulatory Factors/chemistry , Interferon Regulatory Factors/genetics , Melanocytes/metabolism , Mice , Molecular Sequence Data , Pigmentation , Signal Transduction , Transcription Factor AP-2/chemistry , Transcription Factor AP-2/metabolism , Zebrafish
3.
Am J Hum Genet ; 110(7): 1123-1137, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37327787

ABSTRACT

Oculocutaneous albinism (OCA) is a rare disorder of pigment production. Affected individuals have variably decreased global pigmentation and visual-developmental changes that lead to low vision. OCA is notable for significant missing heritability, particularly among individuals with residual pigmentation. Tyrosinase (TYR) is the rate-limiting enzyme in melanin pigment biosynthesis and mutations that decrease enzyme function are one of the most common causes of OCA. We present the analysis of high-depth short-read TYR sequencing data for a cohort of 352 OCA probands, ∼50% of whom were previously sequenced without yielding a definitive diagnostic result. Our analysis identified 66 TYR single-nucleotide variants (SNVs) and small insertion/deletions (indels), 3 structural variants, and a rare haplotype comprised of two common frequency variants (p.Ser192Tyr and p.Arg402Gln) in cis-orientation, present in 149/352 OCA probands. We further describe a detailed analysis of the disease-causing haplotype, p.[Ser192Tyr; Arg402Gln] ("cis-YQ"). Haplotype analysis suggests that the cis-YQ allele arose by recombination and that multiple cis-YQ haplotypes are segregating in OCA-affected individuals and control populations. The cis-YQ allele is the most common disease-causing allele in our cohort, representing 19.1% (57/298) of TYR pathogenic alleles in individuals with type 1 (TYR-associated) OCA. Finally, among the 66 TYR variants, we found several additional alleles defined by a cis-oriented combination of minor, potentially hypomorph-producing alleles at common variant sites plus a second, rare pathogenic variant. Together, these results suggest that identification of phased variants for the full TYR locus are required for an exhaustive assessment for potentially disease-causing alleles.


Subject(s)
Albinism, Oculocutaneous , Humans , Haplotypes/genetics , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/diagnosis , Mutation , Alleles
4.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36965478

ABSTRACT

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Subject(s)
Alternative Splicing , DNA-Binding Proteins , Paraparesis, Spastic , Transcription Factors , Paraparesis, Spastic/genetics , Humans , DNA-Binding Proteins/genetics , Transcription Factors/genetics , HeLa Cells , Protein Isoforms/genetics , RNA-Seq , Male , Female , Pedigree , Alleles , Infant , Child, Preschool , Child , Adolescent , Protein Structure, Secondary , RNA, Small Nuclear/genetics
5.
Hum Mol Genet ; 32(1): 46-54, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35913761

ABSTRACT

Glutaminase deficiency has recently been associated with ataxia and developmental delay due to repeat expansions in the 5'UTR of the glutaminase (GLS) gene. Patients with the described GLS repeat expansion may indeed remain undiagnosed due to the rarity of this variant, the challenge of its detection and the recency of its discovery. In this study, we combined advanced bioinformatics screening of ~3000 genomes and ~1500 exomes with optical genome mapping and long-read sequencing for confirmation studies. We identified two GLS families, previously intensely and unsuccessfully analyzed. One family carries an unusual and complex structural change involving a homozygous repeat expansion nested within a quadruplication event in the 5'UTR of GLS. Glutaminase deficiency and its metabolic consequences were validated by in-depth biochemical analysis. The identified GLS patients showed progressive early-onset ataxia, cognitive deficits, pyramidal tract damage and optic atrophy, thus demonstrating susceptibility of several specific neuron populations to glutaminase deficiency. This large-scale screening study demonstrates the ability of bioinformatics analysis-validated by latest state-of-the-art technologies (optical genome mapping and long-read sequencing)-to effectively flag complex repeat expansions using short-read datasets and thus facilitate diagnosis of ultra-rare disorders.


Subject(s)
Glutaminase , Humans , 5' Untranslated Regions , Ataxia/diagnosis , Ataxia/genetics , Glutaminase/genetics
6.
J Med Genet ; 61(3): 212-223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37788905

ABSTRACT

INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.


Subject(s)
Chediak-Higashi Syndrome , Humans , Chediak-Higashi Syndrome/genetics , Chediak-Higashi Syndrome/diagnosis , Chediak-Higashi Syndrome/pathology , Mutation , Proteins/genetics , Mutation, Missense , Base Sequence , Vesicular Transport Proteins/genetics
7.
BMC Genomics ; 25(1): 115, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279154

ABSTRACT

BACKGROUND: Short tandem repeats (STRs) are widely distributed across the human genome and are associated with numerous neurological disorders. However, the extent that STRs contribute to disease is likely under-estimated because of the challenges calling these variants in short read next generation sequencing data. Several computational tools have been developed for STR variant calling, but none fully address all of the complexities associated with this variant class. RESULTS: Here we introduce LUSTR which is designed to address some of the challenges associated with STR variant calling by enabling more flexibility in defining STR loci, allowing for customizable modules to tailor analyses, and expanding the capability to call somatic and multiallelic STR variants. LUSTR is a user-friendly and easily customizable tool for targeted or unbiased genome-wide STR variant screening that can use either predefined or novel genome builds. Using both simulated and real data sets, we demonstrated that LUSTR accurately infers germline and somatic STR expansions in individuals with and without diseases. CONCLUSIONS: LUSTR offers a powerful and user-friendly approach that allows for the identification of STR variants and can facilitate more comprehensive studies evaluating the role of pathogenic STR variants across human diseases.


Subject(s)
Genome, Human , Microsatellite Repeats , Humans , Microsatellite Repeats/genetics , Germ Cells , High-Throughput Nucleotide Sequencing
8.
PLoS Genet ; 17(11): e1009854, 2021 11.
Article in English | MEDLINE | ID: mdl-34723967

ABSTRACT

The forkhead box (Fox) family of transcription factors are highly conserved and play essential roles in a wide range of cellular and developmental processes. We report an individual with severe neurological symptoms including postnatal microcephaly, progressive brain atrophy and global developmental delay associated with a de novo missense variant (M280L) in the FOXR1 gene. At the protein level, M280L impaired FOXR1 expression and induced a nuclear aggregate phenotype due to protein misfolding and proteolysis. RNAseq and pathway analysis showed that FOXR1 acts as a transcriptional activator and repressor with central roles in heat shock response, chaperone cofactor-dependent protein refolding and cellular response to stress pathways. Indeed, FOXR1 expression is increased in response to cellular stress, a process in which it directly controls HSPA6, HSPA1A and DHRS2 transcripts. The M280L mutant compromises FOXR1's ability to respond to stress, in part due to impaired regulation of downstream target genes that are involved in the stress response pathway. Quantitative PCR of mouse embryo tissues show Foxr1 expression in the embryonic brain. Using CRISPR/Cas9 gene editing, we found that deletion of mouse Foxr1 leads to a severe survival deficit while surviving newborn Foxr1 knockout mice have reduced body weight. Further examination of newborn Foxr1 knockout brains revealed a decrease in cortical thickness and enlarged ventricles compared to littermate wild-type mice, suggesting that loss of Foxr1 leads to atypical brain development. Combined, these results suggest FOXR1 plays a role in cellular stress response pathways and is necessary for normal brain development.


Subject(s)
Brain/growth & development , Forkhead Transcription Factors/physiology , Stress, Physiological , Animals , Female , Forkhead Transcription Factors/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Mutation, Missense , Phenotype
9.
Annu Rev Genomics Hum Genet ; 21: 351-372, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32283948

ABSTRACT

Accurate diagnosis is the cornerstone of medicine; it is essential for informed care and promoting patient and family well-being. However, families with a rare genetic disease (RGD) often spend more than five years on a diagnostic odyssey of specialist visits and invasive testing that is lengthy, costly, and often futile, as 50% of patients do not receive a molecular diagnosis. The current diagnostic paradigm is not well designed for RGDs, especially for patients who remain undiagnosed after the initial set of investigations, and thus requires an expansion of approaches in the clinic. Leveraging opportunities to participate in research programs that utilize new technologies to understand RGDs is an important path forward for patients seeking a diagnosis. Given recent advancements in such technologies and international initiatives, the prospect of identifying a molecular diagnosis for all patients with RGDs has never been so attainable, but achieving this goal will require global cooperation at an unprecedented scale.


Subject(s)
Genome, Human , Genomics/methods , Rare Diseases/diagnosis , Rare Diseases/genetics , Humans
10.
Mol Genet Metab ; 140(3): 107707, 2023 11.
Article in English | MEDLINE | ID: mdl-37883914

ABSTRACT

PURPOSE: The NIH Undiagnosed Diseases Program (UDP) aims to provide diagnoses to patients who have previously received exhaustive evaluations yet remain undiagnosed. Patients undergo procedural anesthesia for deep phenotyping for analysis with genomic testing. METHODS: A retrospective chart review was performed to determine the safety and benefit of procedural anesthesia in pediatric patients in the UDP. Adverse perioperative events were classified as anesthesia-related complications or peri-procedural complications. The contribution of procedures performed under anesthesia to arriving at a diagnosis was also determined. RESULTS: From 2008 to 2020, 249 pediatric patients in the UDP underwent anesthesia for diagnostic procedures. The majority had a severe systemic disease (American Society for Anesthesiology status III, 79%) and/or a neurologic condition (91%). Perioperative events occurred in 45 patients; six of these were attributed to anesthesia. All patients recovered fully without sequelae. Nearly half of the 249 patients (49%) received a diagnosis, and almost all these diagnoses (88%) took advantage of information gleaned from procedures performed under anesthesia. CONCLUSIONS: The benefits of anesthesia involving multiple diagnostic procedures in a well-coordinated, multidisciplinary, research setting, such as in the pediatric UDP, outweigh the risks.


Subject(s)
Anesthesia , Anesthesiology , Undiagnosed Diseases , Child , Humans , United States/epidemiology , Undiagnosed Diseases/etiology , Retrospective Studies , Anesthesia/adverse effects , Risk Assessment , Uridine Diphosphate
11.
J Med Genet ; 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790351

ABSTRACT

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

13.
PLoS Genet ; 16(6): e1008841, 2020 06.
Article in English | MEDLINE | ID: mdl-32544203

ABSTRACT

Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.


Subject(s)
Gene Expression Regulation, Developmental , Hereditary Central Nervous System Demyelinating Diseases/genetics , Myelin Sheath/pathology , Neurogenesis/genetics , Tumor Suppressor Proteins/genetics , Animals , Brachial Plexus/diagnostic imaging , Child , DNA Mutational Analysis , Disease Models, Animal , Embryo, Nonmammalian , Female , Frameshift Mutation , Gray Matter/diagnostic imaging , Hereditary Central Nervous System Demyelinating Diseases/diagnostic imaging , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Magnetic Resonance Imaging , Neuroglia/pathology , Oligodendroglia , Sciatic Nerve/diagnostic imaging , White Matter/diagnostic imaging , Exome Sequencing , Zebrafish , Zebrafish Proteins/genetics
14.
J Biol Chem ; 296: 100674, 2021.
Article in English | MEDLINE | ID: mdl-33865856

ABSTRACT

The translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention. We report here that monomeric WT mouse SK1 (GFP-mSK1) translocates to the PM of MCF-7L cells stimulated with carbachol or phorbol 12-myristate 13-acetate, whereas the dimer translocates to the PM in response to sphingosine-1-phosphate; thus, the equilibrium between the monomer and dimer is sensitive to cellular stimulus. In addition, carbachol and phorbol 12-myristate 13-acetate induced translocation of monomeric GFP-mSK1 to lamellipodia, whereas sphingosine-1-phosphate induced translocation of dimeric GFP-mSK1 to filopodia, suggesting that SK1 regulates different cell biological processes dependent on dimerization. GFP-mSK1 mutants designed to modulate dimerization confirmed this difference in localization. Regulation by the C-terminal tail of SK1 was investigated using GFP-mSK1 truncations. Removal of the last five amino acids (PPEEP) prevented translocation of the enzyme to the PM, whereas removal of the last ten amino acids restored translocation. This suggests that the penultimate five amino acids (SRRGP) function as a translocation brake, which can be released by sequestration of the PPEEP sequence. We propose that these determinants alter the arrangement of N-terminal and C-terminal domains in SK1, leading to unique surfaces that promote differential translocation to the PM.


Subject(s)
Breast Neoplasms/pathology , Cell Membrane/metabolism , Lysophospholipids/metabolism , Membrane Microdomains/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/analogs & derivatives , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , MCF-7 Cells , Mice , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Conformation , Protein Multimerization , Protein Transport , Sphingosine/metabolism
15.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31155284

ABSTRACT

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Subject(s)
Acids/chemistry , Albinism/etiology , Chloride Channels/genetics , Fibroblasts/pathology , Genetic Variation , Lysosomal Storage Diseases/etiology , Lysosomes/metabolism , Albinism/metabolism , Albinism/pathology , Animals , Chloride Channels/physiology , Female , Fibroblasts/metabolism , Humans , Hydrogen-Ion Concentration , Infant , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Male , Mice , Oocytes/metabolism , Xenopus laevis
16.
Am J Hum Genet ; 105(2): 413-424, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31327508

ABSTRACT

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.


Subject(s)
Body Dysmorphic Disorders/pathology , Cerebellum/abnormalities , Coloboma/pathology , Developmental Disabilities/pathology , Epilepsy/pathology , Intellectual Disability/pathology , Mutation , Nervous System Malformations/pathology , WD40 Repeats/genetics , Adult , Amino Acid Sequence , Animals , Body Dysmorphic Disorders/genetics , Cerebellum/pathology , Child , Coloboma/genetics , Developmental Disabilities/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Epilepsy/genetics , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nervous System Malformations/genetics , Phenotype , Sequence Homology , Young Adult
17.
J Inherit Metab Dis ; 45(5): 907-918, 2022 09.
Article in English | MEDLINE | ID: mdl-35490291

ABSTRACT

Living with an undiagnosed medical condition places a tremendous burden on patients, their families, and their healthcare providers. The Undiagnosed Diseases Program (UDP) was established at the National Institutes of Health (NIH) in 2008 with the primary goals of providing a diagnosis for patients with mysterious conditions and advancing medical knowledge about rare and common diseases. The program reviews applications from referring clinicians for cases that are considered undiagnosed despite a thorough evaluation. Those that are accepted receive clinical evaluations involving deep phenotyping and genetic testing that includes exome and genomic sequencing. Selected candidate gene variants are evaluated by collaborators using functional assays. Since its inception, the UDP has received more than 4500 applications and has completed evaluations on nearly 1300 individuals. Here we present six cases that exemplify the discovery of novel disease mechanisms, the importance of deep phenotyping for rare diseases, and how genetic diagnoses have led to appropriate treatment. The creation of the Undiagnosed Diseases Network (UDN) in 2014 has substantially increased the number of patients evaluated and allowed for greater opportunities for data sharing. Expansion to the Undiagnosed Diseases Network International (UDNI) has the possibility to extend this reach even farther. Together, networks of undiagnosed diseases programs are powerful tools to advance our knowledge of pathophysiology, accelerate accurate diagnoses, and improve patient care for patients with rare conditions.


Subject(s)
Undiagnosed Diseases , Exome , Humans , National Institutes of Health (U.S.) , Rare Diseases/diagnosis , Rare Diseases/genetics , United States , Uridine Diphosphate
18.
Brain ; 144(9): 2659-2669, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34415322

ABSTRACT

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Subject(s)
Alleles , Genetic Variation/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Minor Histocompatibility Antigens/genetics , Neurodevelopmental Disorders/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Hereditary Central Nervous System Demyelinating Diseases/diagnostic imaging , Humans , Infant , Infant, Newborn , Leukocytes, Mononuclear/physiology , Male , Neurodevelopmental Disorders/diagnostic imaging , Pedigree
19.
PLoS Genet ; 15(5): e1008143, 2019 05.
Article in English | MEDLINE | ID: mdl-31125343

ABSTRACT

Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient's two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient's fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient's biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders.


Subject(s)
Oxidoreductases/genetics , Oxidoreductases/metabolism , Adult , Alleles , Animals , Binding Sites , Ceruloplasmin/metabolism , Child, Preschool , Copper/metabolism , Female , Gene Expression Regulation/genetics , Genetic Variation/genetics , HEK293 Cells , Hair , Humans , Iron/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Oxidation-Reduction , Phenotype
20.
Proc Natl Acad Sci U S A ; 116(27): 13320-13329, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31209056

ABSTRACT

Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased Vmax with unchanged Km), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Dogs , Enzyme Activation/drug effects , Humans , Madin Darby Canine Kidney Cells , Phosphorylation , Polycystic Kidney Diseases/metabolism , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL