ABSTRACT
Fc receptors are involved in a variety of physiologically and disease-relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counterselection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model, and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.
Subject(s)
Designed Ankyrin Repeat Proteins , Platelet Aggregation , Receptors, IgG , Humans , Antibodies/metabolism , Blood Platelets/metabolism , Designed Ankyrin Repeat Proteins/metabolism , HIV-1 , Protein Isoforms/metabolism , Receptors, IgG/metabolism , Virus Latency , T-Lymphocytes/virologyABSTRACT
The current resuscitation guidelines of the European Resuscitation Council do not include automatic chest compression devices (ACDs) as standard equipment to support cardiopulmonary resuscitation attempts. One possible reason could be the lack of a list of indications and contraindications for the use of ACD systems. This review should give a summary of current studies and developments according to ACD systems and deliver a list of possible applications. Furthermore, we discuss some ethical problems with cardiopulmonary resuscitation attempts and, in particular, with ACD systems. The use of ACDs occurs instead of manual chest compression. Because of this, there is no reason for changing the current guidelines, especially termination recommendations while using ACD systems. From our point of view, ACDs are a very good supplement to the current standard of resuscitation according to the European Resuscitation Council guidelines.
Subject(s)
Cardiopulmonary Resuscitation/instrumentation , Heart Massage/instrumentation , Contraindications , Heart Arrest/therapy , Humans , Practice Guidelines as TopicABSTRACT
HIV-1 infection results in the activation of inflammasome that may facilitate viral spread and establishment of viral reservoirs. We evaluated the effects of the caspase-1 inhibitor VX-765 on HIV-1 infection in humanized NSG mice engrafted with human CD34+ hematopoietic stem cells. Expression of caspase-1, NLRP3, and IL-1ß was increased in lymph nodes and bone marrow between day 1 and 3 after HIV-1 infection (mean fold change (FC) of 2.08, 3.23, and 6.05, p<0.001, respectively). IFI16 and AIM2 expression peaked at day 24 and coincides with increased IL-18 levels (6.89 vs 83.19 pg/ml, p=0.004), increased viral load and CD4+ T cells loss in blood (p<0.005 and p<0.0001, for the spleen respectively). Treatment with VX-765 significantly reduced TNF-α at day 11 (0.47 vs 2.2 pg/ml, p=0.045), IL-18 at day 22 (7.8 vs 23.2 pg/ml, p=0.04), CD4+ T cells (44.3% vs 36,7%, p=0.01), viral load (4.26 vs 4.89 log 10 copies/ml, p=0.027), and total HIV-1 DNA in the spleen (1 054 vs 2 889 copies /106 cells, p=0.029). We demonstrated that targeting inflammasome activation early after infection may represent a therapeutic strategy towards HIV cure to prevent CD4+ T cell depletion and reduce immune activation, viral load, and the HIV-1 reservoir formation.
The human immunodeficiency virus (HIV) affects millions of people across the world, and has caused over forty million deaths. HIV attacks the immune system, eventually leading to lower levels of immune cells, which prevent the body from fighting infections. One of the early effects of HIV infection is inflammation, an immune process that helps the body remove foreign invaders like viruses. Unfortunately, long term inflammation can lead to serious conditions like cardiovascular disease and cancer. Doctors manage HIV using a class of drugs known as antiretrovirals. These drugs reduce the amount of virus in the body, but they cannot eliminate it entirely. This is because, in the early days of infection, copies of the virus build up in certain organs and tissues, like the gut, forming viral reservoirs. Antiretroviral drugs cannot reach these reservoirs to eliminate them, making a cure for HIV out of reach. One way to address this problem is to develop a new class of drugs that can stop the virus from forming these reservoirs in the first place. Amand et al. wanted to see whether they could reduce the amount of viral reservoirs that form in HIV patients by interrupting a process called inflammasome activation, which occurs early after HIV infection. Inflammasomes are viral detectors that play a role in both inflammation and the formation of viral reservoirs. They activate an enzyme called caspase-1, which in turn activates proteins called cytokines. These cytokines go on to stimulate further inflammation. Amand et al. wanted to see whether a drug called VX-765, which blocks the activity of the caspase-1 enzyme, could reduce inflammation and stop the formation of viral reservoirs. To do this, Amand et al. first 'humanized' mice, by populating them with human immune cells, so they could become infected with HIV. They then infected these mice with HIV, and proceeded to treat them with VX-765 two days after infection. The results showed that these mice had fewer viral reservoirs, lower levels of cytokines and higher numbers of immune cells than untreated mice. The findings of Amand et al. show that targeting inflammasome activation early after infection could be a promising strategy for treating HIV. Indeed, if similar results were obtained in humans, then this technique may be the road towards a cure for this virus. In any case, it is likely that combining drugs like VX765 with antiretrovirals will improve long term outcomes for people with HIV.
Subject(s)
HIV Infections , HIV-1 , Mice , Humans , Animals , Inflammasomes/metabolism , Interleukin-18 , Viral Load , T-Lymphocytes/metabolism , CD4-Positive T-LymphocytesABSTRACT
PURPOSE OF REVIEW: To summarize the current status and highlight recent findings on predictive biomarkers for posttreatment HIV control (PTC) and virological remission. While historically, many studies focused on virological markers, there is an increasing tendency to enter immune and metabolic factors into the equation. RECENT FINDINGS: On the virological side, several groups reported that cell-associated HIV RNA could predict time to viral rebound. Recent data hints at the possible importance of the genic location and chromatin context of the integrated provirus, although these factors still need to be assessed in relation to PTC and virological remission. Evidence from immunological studies highlighted innate and humoral immunity as important factors for prolonged HIV remission. Interestingly, novel metabolic markers have emerged, which offer additional angles to our understanding of latency and viral rebound. SUMMARY: Facilitating PTC and virological remission remain top priorities for the HIV cure research. We advocate for clear and precise definitions for both phenomena in order to avoid misconceptions and to strengthen the conclusions that can be drawn. As no one-size-fits-all marker has emerged yet, more biomarkers are on the horizon, and viral rebound is a complex and heterogeneous process, it is likely that a combination of various biomarkers in cohesion will be necessary for a more accurate prediction of antiretroviral therapy-free HIV remission.
Subject(s)
HIV Infections , Anti-Retroviral Agents/therapeutic use , Biomarkers , Humans , Proviruses , Viral LoadABSTRACT
CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
ABSTRACT
Antiretroviral therapy (ART) is not curative as HIV-1 persists in long-lived viral reservoirs. Consequently, patients are dependent on life-long drug adherence with possible side effects. To overcome these limitations strategies of a functional cure aim at ART free viral remission. In this study, we sought to identify detailed subsets of anti-viral CD8+ T cell immunity linked to natural long-term control of HIV-1 infection. Here, we analyzed HIV controllers and ART suppressed progressors for in vitro viral suppressive capacity (VSC) at baseline and after peptide stimulation. Functional properties and phenotypes of CD8+ T cells were assessed by IFN-γ ELISPOT and 18 color flow cytometry. HIV controllers showed significantly increased suppression at baseline as well as after peptide stimulation. IFN-γ secretion and the proliferation marker Ki67 positively correlated with VSC. Moreover, the detailed phenotype of three distinct multifunctional memory CD8+ T cell subsets were specific traits of HIV controllers of which two correlated convincingly with VSC. Our results underline the importance of multifunctional CD8+ T cell responses during natural control. Especially the role of CXCR5 expressing cytotoxic subsets emphasizes potential surveillance in sites of reservoir persistence and demand further study.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation/immunology , HIV Infections/immunology , HIV-1/immunology , Peptides , Receptors, CXCR5/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/pathology , Female , Gene Expression Regulation/drug effects , HIV Infections/drug therapy , HIV Infections/pathology , Humans , Immunologic Memory , Male , Middle Aged , Peptides/immunology , Peptides/pharmacologyABSTRACT
OBJECTIVE: To determine whether viral suppressive capacity (VSC) of CD8+ T cells can be boosted by stimulation with HIV-1 peptides and whether the ability to control HIV-1 replication correlates with immunological (cytokine production and CD8+ T-cell phenotype) and viral reservoir measures (total HIV-1 DNA and cell-associated RNA) in well treated HIV-infected chronic progressors. DESIGN: We compared VSC of peripheral CD8+ T cells to cytokine production profile in response to peptide stimulation, detailed phenotype (17-color flow-cytometry), reservoir size (total HIV-1 DNA), basal viral transcription (unspliced cell-associated RNA) and inducible viral transcription (tat/rev induced limiting dilution assay) in 36 HIV+ patients on cART and six healthy donors. RESULTS: We found that the VSC of CD8+ T cells can be increased by prior stimulation with a pool of consensus HIV-1 gag peptides in a significant proportion of progressor patients. We also found that VSC after peptide stimulation was correlated with higher expression of immune checkpoint markers on subsets of terminally differentiated effector memory (TEMRA) CD8 T cells as well as with production of IFN-γ, TNF-α and IL-10. We did not find a correlation between VSC and viral reservoir measures. CONCLUSION: These results add to a small body of evidence that the capacity of CD8+ T cells to suppress viral replication is increased after stimulation with HIV-1 peptides. Interestingly, this VSC was correlated with expression of immune checkpoint markers, which are generally considered to be markers of exhaustion. Our findings may guide further investigations into immune phenotypes correlated with viral suppression.
Subject(s)
AIDS Vaccines/administration & dosage , Anti-HIV Agents/therapeutic use , Biomarkers/analysis , CD8-Positive T-Lymphocytes/immunology , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , Adult , Anti-HIV Agents/pharmacology , Cytokines/analysis , DNA, Viral/analysis , Female , HIV-1/growth & development , HIV-1/immunology , Humans , Male , Middle Aged , RNA, Viral/analysis , Transcription, Genetic , Treatment Outcome , Viral Proteins/administration & dosage , Virus Replication/drug effectsABSTRACT
Early life adversity (ELA) increases the risk for multiple age-related diseases, such as diabetes type 2 and cardiovascular disease. As prevalence is high, ELA poses a major and global public health problem. Immunosenescence, or aging of the immune system, has been proposed to underlie the association between ELA and long-term health consequences. However, it is unclear what drives ELA-associated immunosenescence and which cells are primarily affected. We investigated different biomarkers of immunosenescence in a healthy subset of the EpiPath cohort. Participants were either parent-reared (Ctrl, n = 59) or had experienced separation from their parents in early childhood and were subsequently adopted (ELA, n = 18). No difference was observed in telomere length or in methylation levels of age-related CpGs in whole blood, containing a heterogeneous mixture of immune cells. However, when specifically investigating T cells, we found a higher expression of senescence markers (CD57) in ELA. In addition, senescent T cells (CD57+) in ELA had an increased cytolytic potential compared to senescent cells in controls. With a mediation analysis we demonstrated that cytomegalovirus (CMV) infection, which is an important driving force of immunosenescence, largely accounted for elevated CD57 expression observed in ELA. Leukocyte telomere length may obscure cell-specific immunosenescence; here, we demonstrated that the use of cell surface markers of senescence can be more informative. Our data suggest that ELA may increase the risk of CMV infection in early childhood, thereby mediating the effect of ELA on T cell-specific immunosenescence. Thus, future studies should include CMV as a confounder or selectively investigate CMV seronegative cohorts.
ABSTRACT
INTRODUCTION: To examine a potential interrelation of left ventricular (LV) wall stress and hypertrophy, we assessed increased wall stress in patients with suspected non-ischemic dilative cardiomyopathy and addressed the question whether increased LV wall stress is involved in the development of LV hypertrophy. METHODS: We studied 502 consecutive patients in whom LV mass, LV enddiastolic (LVEDV) and endsystolic volume (LVESV) was determined using cardiac magnetic resonance (CMR). Based on a thick-walled sphere, we introduced a myocardial and cavity volume-based wall stress index. Follow up CMR examinations were obtained in a representative subgroup of 71 patients. RESULTS: LV mass was correlated with LVEDV (r=0.517, P<0.001) and LVESV (r=0.510, P<0.001). Despite LV hypertrophy, LV mass was not sufficient to compensate for LV dilatation resulting in an increased wall stress. Increased LV enddiastolic wall stress was found in 227 patients (45 %) and increased endsystolic wall stress in 198 (39 %). In patients with normal LV enddiastolic wall stress ≤ 4 kPa at time of enrolment, no changes of LV mass occurred during follow up (142 ± 46 g vs. 141 ± 47 g). In contrast, patients with initially increased LV enddiastolic wall stress >4 kPa developed greater LV hypertrophy (141 ± 48 g vs. 158 ± 60 g, P=0.0247). CONCLUSIONS: LV wall stress can be derived from CMR measurements of LV myocardium and cavity using the volume-based wall stress index. Increased LV enddiastolic wall stress leads to LV hypertrophy. Beyond a certain degree of LV dilatation, the extent of hypertrophy does not compensate LV dilatation. The ensuing increased wall stress promotes dilatation and consecutively hypertrophy with an unfavorable prognosis. It is proposed to use the volume-based wall stress index as new diagnostic criterion in heart failure.
Subject(s)
Cardiomyopathy, Dilated/diagnosis , Diastole/physiology , Heart Failure/diagnosis , Hypertrophy, Left Ventricular/diagnosis , Adult , Cardiomyopathy, Dilated/physiopathology , Female , Follow-Up Studies , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Humans , Hypertrophy, Left Ventricular/physiopathology , Male , Middle Aged , Prospective StudiesABSTRACT
AIMS: Occurrence of late gadolinium enhancement (LGE) as assessed by cardiac magnetic resonance (CMR) imaging has been attributed to various myocardial injuries. We hypothesized that LGE is associated with left ventricular (LV) wall stress. METHODS AND RESULTS: We examined 300 patients with suspected non-ischaemic dilated cardiomyopathy. Cardiac magnetic resonance was used to assess LV volume, mass, wall stress, and LGE. Increased LV end-diastolic wall stress (> 4 kPa) was found in 112 patients (37 %), and increased end-systolic wall stress (>18 kPa) in 121 patients (40%). Presence of LGE was observed in 93 patients (31%). End-diastolic (94 ± 43 vs. 79 ± 42 ml/m(2), P = 0.006) and end-systolic LV volumes (62 ± 44 vs. 44 ± 37 ml/m(2), P < 0.001) and LV mass (95 ± 34 vs. 78 ± 31 g/m(2), P < 0.001) were increased in patients exhibiting LGE. In particular, LV end-diastolic and end-systolic wall stress were increased (4.5 ± 2.8 vs. 3.6 ± 3.0 kPa, P = 0.025; 19.6 ± 9.1 vs. 17.5 ± 8.2 kPa, P = 0.045). Late gadolinium enhancement was observed more frequently than would be expected from random occurrence in patients with increased end-diastolic (39 vs. 26%, P = 0.020) and end-systolic wall stress (41 vs. 24%, P = 0.002). Both normal end-diastolic and end-systolic wall stress had a high negative predictive value for LGE (75 and 76%). CONCLUSIONS: The present study shows that occurrence of LGE in cardiomyopathy is associated with increased LV wall stress and mass. Suspected causes are an increased capillary leakage by stretch, impaired contrast agent redistribution, or increased diffusion distances. It is proposed that LGE should be considered as a potential prognostic determinant of heart failure and severe arrhythmias.