Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Food Sci Technol ; 60(1): 252-261, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36349282

ABSTRACT

Acute lung injury (ALI), is a severe inflammatory lung disease. We tested the prophylactic effect of a functional food mix comprising three anti-inflammatory plant products: turmeric, amla, and black pepper (TAB) against lipopolysaccharide (LPS)-induced ALI in rats. Two-month-old male Wistar rats were randomly divided into three groups: control (C), LPS (5 mg/kg), and LPS with TAB (TAB). After 6 h of LPS injection, the rats were sacrificed by cervical decapitation to collect the lung tissue. Results showed that TAB partially ameliorated LPS-induced increase in circulating inflammatory cytokines (TNFα and IL6) and significantly prevented lung histopathological changes. TAB also suppressed LPS-activated ER stress markers (GRP78, pIRE1, and CHOP) and apoptotic markers (caspase-3 and - 12) in the lung. The anti-inflammatory effects of the TAB support its potential use as an adjuvant to mitigate ALI. Importantly, TAB's ingredients have been used for centuries as part of the diet with limited or no toxic effects.

2.
Pharmaceutics ; 15(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514191

ABSTRACT

Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.

SELECTION OF CITATIONS
SEARCH DETAIL