Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Animals (Basel) ; 12(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35953944

ABSTRACT

The supplementation of feed with phytases enables broilers to utilize more efficiently phosphorus (P) from phytic acid (IP6), the main storage form of P in plants. The current study evaluated the addition of 500, 1000, and 3000 FTU of phytase per kg to a phytate-containing diet with low P level (LP) fed to broilers from 1 to 21 days of age and compared it to a hypoallergenic phytate-free diet (HPF). There was a linear improvement in performance parameters with increasing levels of phytase in the LP diet (p < 0.001). Apparent ileal digestibility of crude protein, P, and some amino acids, increased with phytase. Crude ash, P, and the calcium content of tibia bones linearly increased with increasing levels of phytase (p < 0.001). Crypt depth (related to body weight) in the jejunum epithelium linearly decreased with phytase addition (p < 0.001). Cecal crypt depth decreased with phytase supplementation (p = 0.002). Cecum tissue showed lower counts of CD3-positive intraepithelial lymphocytes in broilers receiving the phytase in comparison to LP (p < 0.001), achieving similar counts to HPF-fed broilers. Although results from the current study seem to point out some mechanisms related to the immune response and mucosal morphology contributing to those overall beneficial effects, no clear differences between different phytase doses could be demonstrated in these specific parameters.

2.
Anim Nutr ; 8(1): 153-159, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34977385

ABSTRACT

This study was to characterise the undigested nutrients present along the gastrointestinal tract of birds offered common wheat- or maize-based diets, with the goal of optimising utilisation of enzymes to enhance digestive efficiency. Wheat- and maize-based diets were offered to 240 mixed-sex broilers (10 birds/pen; n = 12) from 1 to 35 d post-hatch. Digestibility of dry matter, starch, crude protein and non-starch polysaccharides (NSP) were measured in the crop, gizzard, duodenum, jejunum, ileum, caeca and excreta at d 12 and 35 post-hatch. Analysis of nutrient levels in the excreta presented that more than 30% of nutrients provided in the feed was wasted, irrespective of wheat or maize diet type. On average, 92 g/kg crude protein, 92 g/kg insoluble NSP and 14 g/kg oligosaccharides were not utilised by birds at d 12 post-hatch. The quantity of water-insoluble NSP in the small intestine at d 12 was lower in birds offered the wheat-based diet compared to those fed the maize-based diet (P < 0.05), with the reverse being true for water-soluble NSP (P < 0.001). On average, 84 g/kg crude protein, 79 g/kg insoluble NSP and 9 g/kg oligosaccharides remained in the excreta at 35 d of age. At this time period, accumulation of feed in the gizzard was noted for birds offered both diets, but was more pronounced in those offered the maize-based diet (P < 0.001). Birds offered the maize-based diet demonstrated improved utilisation of oligosaccharides compared to those fed the wheat-based diet at both d 12 and 35 (P = 0.087 and P = 0.047, respectively). Protein utilisation in the jejunum and ileum was greater in birds offered the wheat-based diet compared to those fed the maize-based diet (P = 0.004 and P < 0.001, respectively). Thus, while both diets supported standard growth performance of birds, the degree and flow of nutrient disappearance along the gastrointestinal tract was influenced by cereal type and bird age.

3.
Anim Nutr ; 10: 207-215, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785248

ABSTRACT

The present study evaluated the impacts of fibre-degrading enzymes on the profiles of non-starch polysaccharides (NSP) and oligosaccharides (OS) in the ileum of broiler chickens offered wheat- or maize-based diets under subclinical necrotic enteritis (NE) challenge. A 2 × 2 × 4 factorial arrangement of treatments was used. Factors were the following: NE challenge, no or yes; diet type, wheat- or maize-based; and supplemental enzymes, control (no enzyme), family 10 xylanase (XYN10), family 11 xylanase (XYN11) or ß-mannanase (MAN). Birds in the challenged group were inoculated with Eimeria on d 9 and Clostridium perfringens on d 14 and 15. A 3-way interaction (P = 0.047) occurred on overall (d 0 to 16) weight gain. When NE was present, all the supplemental enzymes increased weight gain in birds fed the wheat-based diet; whereas in those fed the maize-based diet supplemental XYN10 and XYN11 decreased weight gain. When NE was absent, birds fed the wheat-based diet supplemented with XYN10 or MAN presented increased weight gain compared to non-supplemented birds, but no improvements with enzyme addition were observed in birds fed the maize-based diet. A 3-way interaction (P = 0.002) was observed on insoluble NSP level in the ileum. When NE was absent, all the supplemental enzymes reduced the ileal level of insoluble NSP, regardless of diet type. In the challenged birds, supplementing XYN10 and MAN reduced insoluble NSP level in the ileum, but only in birds fed the wheat-based diet. Ileal soluble NSP level was reduced by supplemental XYN11 and MAN, but only in birds fed the wheat-based diet, resulting in a 2-way diet type × enzyme interaction (P < 0.001). Ileal OS arabinose (P = 0.030) level was highest in birds offered the wheat-based diet supplemented with XYN11. Collectively, supplementation of NSP-degrading enzymes to the wheat-based diet enhanced bird performance regardless of NE challenge, with XYN11 significantly increasing oligosaccharide release. However, enzyme addition did not improve growth performance in birds fed maize-based diet, with supplemental XYN10 and XYN11 impeding weight gain when NE was present.

4.
Anim Nutr ; 9: 138-142, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35600558

ABSTRACT

The present study characterised the types and amounts of non-starch polysaccharides (NSP) remaining undigested along the gastrointestinal tract (GIT) of broiler chickens offered a typical wheat- or maize-based diet. One-day old Cobb 500 mixed-sex chicks were assigned to 24 pens, with 10 birds/pen and 12 pens/treatment. Birds were offered the experimental diets in 3 phases (starter, day 0 to 10; grower, day 11 to 24 and finisher, day 25 to 35). Excreta and digesta samples from the crop, gizzard, duodenum, jejunum, ileum and caeca were collected at 12 and 35 days of age, and analysed for the NSP flow. The wheat-based diet contained higher levels of soluble NSP than the maize-based diet, whereas insoluble NSP levels were similar between the 2 diets. Detailed analysis of NSP constituents revealed that arabinoxylans were the primary NSP in the wheat-based diet, mostly in insoluble form. Pectins were the predominant NSP in the maize-based diet, followed by arabinoxylans. Overall, birds offered the wheat-based diet presented higher levels of soluble NSP remaining in all gut sections compared to birds offered the maize-based diet, at both 12 and 35 days of age (P < 0.050). Accumulation of insoluble NSP in the gizzard was noted in birds fed both diets, but was more pronounced in birds offered the maize-based diet compared to the wheat-based diet, at both 12 and 35 days of age (P < 0.001). The present study highlights marked differences in the amounts and types of NSP delivered to the different gut sections when feeding wheat-compared to maize-based diets, particularly in the gizzard and the lower GIT of birds.

5.
Anim Nutr ; 10: 54-67, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35647323

ABSTRACT

The present study investigated whether supplementing fibre-degrading enzymes can ameliorate the severity of subclinical necrotic enteritis (NE) in broiler chickens offered wheat- or maize-based diets. A total of 1,544 mixed-sex broiler chickens were assigned to 16 experimental treatments as a 2 × 2 × 4 factorial arrangement of treatments. The factors were the following: NE challenge, yes or no; diet type, wheat- or maize-based; and enzyme supplementation, control (no enzyme), family 10 xylanase (XYN10), family 11 xylanase (XYN11) or ß-mannanase (MAN). Each treatment was replicated 6 times, with 16 birds per replicate pen. A three-way challenge × diet type × enzyme interaction occurred for body weight at 21 d of age (P = 0.025) and overall feed conversion ratio (P = 0.001). In the non-challenged birds fed the wheat-based diet, supplementing MAN increased d 21 body weight compared to the control. In challenged birds fed the maize-based diet, supplemental XYN11 impeded body weight and overall FCR compared to the control. Birds offered the maize-based diet presented heavier relative gizzard weights at both 16 and 21 d of age (P < 0.001) and reduced liveability (P = 0.046) compared to those fed the wheat-based diet. Enzyme supplementation reduced ileal and jejunal digesta viscosity at 16 d of age only in birds fed the wheat-based diet (P < 0.001). XYN11 increased ileal digesta viscosity in birds fed the maize-based diet, and MAN reduced it in birds fed the wheat-based diet at 21 d of age (P = 0.030). Supplementing XYN11 improved ileal soluble non-starch polysaccharides (NSP) digestibility in birds fed the wheat-based diet compared to non-supplemented birds (P < 0.001). Birds fed the wheat-based diet displayed a higher abundance of Bifidobacterium, Lactobacillus and Enterobacteriaceae and butyric acid in the caeca at 16 d of age compared to birds fed the maize-based diet (P < 0.05). In conclusion, supplemental XYN11 exacerbated the negative impact of NE on growth performance in birds fed the maize-based diet. Supplementing wheat-based diets with fibre-degrading enzymes ameliorates production losses induced by NE.

6.
Animals (Basel) ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203822

ABSTRACT

Phosphorus (P) is an essential mineral for growing piglets, which is poorly accessible in vegetable feedstuffs as it is stored as phytates. Thus, phytase supplementation is essential to increase P availability. Two experiments were conducted to evaluate a novel 6-phytase (EC 3.1.3.26) in weaned pigs fed low-P diets. In each experiment, one hundred and twenty piglets were fed a positive control (PC; adequate in Ca and P), a negative control (NC; limiting in Ca and P), or NC supplemented with 125, 250, or 500 FTU/kg of phytase (NC125, NC250, and NC500, respectively). P content was lower in diets of Experiment 1 than diets of Experiment 2. In Experiment 1, piglets offered PC or phytase diets had higher growth and efficiency compared with NC diets. In Experiment 2, similar effects were obtained, but the effects were less significant. In both experiments, P and Ca ATTD and bone density were significantly increased with phytase supplementation. Moreover, PC and NC500 had higher P concentrations and lower alkaline phosphatase activity in plasma than NC. To conclude, supplementation with the new 6-phytase at doses up to 500 FTU/kg enhanced P utilization, growth performance, and bone density in piglets fed P-limiting diets.

7.
Arch Anim Nutr ; 65(2): 123-33, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21545078

ABSTRACT

In cereal-based diets, non-starch polysaccharides (NSP) lower precaecal nutrient absorption and increase endogenous protein and amino acid (AA) losses. Adding exogenous NSP-degrading enzymes aims amongst others to reduce these negative effects and to thereby improve protein and AA supply. However, biased results exist in the literature on their efficacy in growing pigs. Hence, the objective of this study was to analyse the effects of different levels of xylanase and beta-glucanase supplementation. Nitrogen (N) retention from a threonine-limited diet was chosen as an indirect indicator for differences in praecaecal threonine absorption and endogenous protein and AA losses. During three balance periods, 12 male pigs with a bodyweight of 31-66 kg were used in a cross-over design. They received three different diets based on wheat, barley, rye, and soybean meal containing 0, 40 or 80 mg/kg of an enzyme preparation containing endo-1,4,-beta-xylanase and endo-1,4-beta-glucanase. N excretion and retention were identical in animals of the different treatment groups, stressing that enzyme supplementation did not affect threonine absorption and/or endogenous protein and AA losses neither at medium nor at high supplementation level. Hence, in the present trial, beta-glucanase and xylanase addition to cereal diets did not improve protein and AA availability in growing pigs of a body weight > 30 kg.


Subject(s)
Diet/veterinary , Endo-1,4-beta Xylanases/pharmacology , Glycoside Hydrolases/pharmacology , Swine/growth & development , Swine/metabolism , Threonine/deficiency , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Dietary Supplements , Edible Grain , Male , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL