Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Chem Biol ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233584

ABSTRACT

BCL-2-associated X protein (BAX) is a promising therapeutic target for activating or restraining apoptosis in diseases of pathologic cell survival or cell death, respectively. In response to cellular stress, BAX transforms from a quiescent cytosolic monomer into a toxic oligomer that permeabilizes the mitochondria, releasing key apoptogenic factors. The mitochondrial lipid trans-2-hexadecenal (t-2-hex) sensitizes BAX activation by covalent derivatization of cysteine 126 (C126). In this study, we performed a disulfide tethering screen to discover C126-reactive molecules that modulate BAX activity. We identified covalent BAX inhibitor 1 (CBI1) as a compound that selectively derivatizes BAX at C126 and inhibits BAX activation by triggering ligands or point mutagenesis. Biochemical and structural analyses revealed that CBI1 can inhibit BAX by a dual mechanism of action: conformational constraint and competitive blockade of lipidation. These data inform a pharmacologic strategy for suppressing apoptosis in diseases of unwanted cell death by covalent targeting of BAX C126.

2.
Nat Chem Biol ; 16(11): 1218-1226, 2020 11.
Article in English | MEDLINE | ID: mdl-32807965

ABSTRACT

The ubiquitin-proteasome system (UPS) is a highly regulated protein disposal process critical to cell survival. Inhibiting the pathway induces proteotoxic stress and can be an effective cancer treatment. The therapeutic window observed upon proteasomal blockade has motivated multiple UPS-targeting strategies, including preventing ubiquitination altogether. E1 initiates the cascade by transferring ubiquitin to E2 enzymes. A small molecule that engages the E1 ATP-binding site and derivatizes ubiquitin disrupts enzymatic activity and kills cancer cells. However, binding-site mutations cause resistance, motivating alternative approaches to block this promising target. We identified an interaction between the E2 N-terminal alpha-1 helix and a pocket within the E1 ubiquitin-fold domain as a potentially druggable site. Stapled peptides modeled after the E2 alpha-1 helix bound to the E1 groove, induced a consequential conformational change and inhibited E1 ubiquitin thiotransfer, disrupting E2 ubiquitin charging and ubiquitination of cellular proteins. Thus, we provide a blueprint for a distinct E1-targeting strategy to treat cancer.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm , Humans , Molecular Conformation , Molecular Docking Simulation , Peptides/chemistry , Protein Binding , Structure-Activity Relationship , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitination
3.
Chemistry ; 23(52): 12853-12860, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28718982

ABSTRACT

Designing selective antibacterial molecules remains an unmet goal in the field of membrane-targeting agents. Herein, we report the rational design and synthesis of a new class of lipopeptides, which possess highly selective bacterial killing over mammalian cells. The selective interaction with bacterial over mammalian membranes was established through various spectroscopic, as well as microscopic experiments, including biophysical studies with the model membranes. A detailed antibacterial structure-activity relationship was delineated after preparing a series of molecules consisting of the peptide moieties with varied sequence of amino acids, such as d-phenylalanine, d-leucine, and d-lysine. Antibacterial activity was found to vary with the nature and positioning of hydrophobicity in the molecules, as well as number of positive charges. Optimized lipopeptide 9 did not show any hemolytic activity even at 1000 µg mL-1 and displayed >200-fold and >100-fold selectivity towards S. aureus and E. coli, respectively. More importantly, compound 9 was found to display good antibacterial activity (MIC 6.3-12.5 µg mL-1 ) against the five top most critical bacteria according to World Health Organization (WHO) priority pathogens list. Therefore, the results suggested that this new class of lipopeptides bear real promises for the development as future antibacterial agents.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Drug Design , Lipopeptides/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/metabolism , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Escherichia coli/drug effects , HEK293 Cells , Hemolysis/drug effects , Humans , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Microscopy, Fluorescence , Permeability/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
4.
Mol Pharm ; 13(10): 3578-3589, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27589087

ABSTRACT

The continuous rise of antimicrobial resistance and the dearth of new antibiotics in the clinical pipeline raise an urgent call for the development of potent antimicrobial agents. Cationic chitosan derivatives, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chlorides (HTCC), have been widely studied as potent antibacterial agents. However, their systemic structure-activity relationship, activity toward drug-resistant bacteria and fungi, and mode of action are very rare. Moreover, toxicity and efficacy of these polymers under in vivo conditions are yet to be established. Herein, we investigated antibacterial and antifungal efficacies of the HTCC polymers against multidrug resistant bacteria including clinical isolates and pathogenic fungi, studied their mechanism of action, and evaluated cytotoxic and antimicrobial activities in vitro and in vivo. The polymers were found to be active against both bacteria and fungi (MIC = 125-250 µg/mL) and displayed rapid microbicidal kinetics, killing pathogens within 60-120 min. Moreover, the polymers were shown to target both bacterial and fungal cell membrane leading to membrane disruption and found to be effective in hindering bacterial resistance development. Importantly, very low toxicity toward human erythrocytes (HC50 = >10000 µg/mL) and embryo kidney cells were observed for the cationic polymers in vitro. Further, no inflammation toward skin tissue was observed in vivo for the most active polymer even at 200 mg/kg when applied on the mice skin. In a murine model of superficial skin infection, the polymer showed significant reduction of methicillin-resistant Staphylococcus aureus (MRSA) burden (3.2 log MRSA reduction at 100 mg/kg) with no to minimal inflammation. Taken together, these selectively active polymers show promise to be used as potent antimicrobial agents in topical and other infections.


Subject(s)
Anti-Infective Agents/therapeutic use , Chitosan/analogs & derivatives , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/therapeutic use , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Cell Survival/drug effects , Chitosan/adverse effects , Chitosan/chemistry , Chitosan/therapeutic use , Drug Resistance, Fungal , Drug Resistance, Multiple, Bacterial , Female , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Quaternary Ammonium Compounds/adverse effects , Staphylococcal Skin Infections/drug therapy , Structure-Activity Relationship
5.
Bioconjug Chem ; 26(12): 2442-53, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26452096

ABSTRACT

The emergence of bacterial resistance and biofilm associated infections has created a challenging situation in global health. In this present state of affairs where conventional antibiotics are falling short of being able to provide a solution to these problems, development of novel antibacterial compounds possessing the twin prowess of antibacterial and antibiofilm efficacy is imperative. Herein, we report a library of amino acid tunable lipidated norspermidine conjugates that were prepared by conjugating both amino acids and fatty acids with the amine functionalities of norspermidine through amide bond formation. These lipidated conjugates displayed potent antibacterial activity against various planktonic Gram-positive and Gram-negative bacteria including drug-resistant superbugs such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and ß-lactam-resistant Klebsiella pneumoniae. This class of nontoxic and fast-acting antibacterial molecules (capable of killing bacteria within 15 min) did not allow bacteria to develop resistance against them after several passages. Most importantly, an optimized compound in the series was also capable of killing metabolically inactive persisters and stationary phase bacteria. Additionally, this compound was capable of disrupting the preformed biofilms of S. aureus and E. coli. Therefore, this class of antibacterial conjugates have potential in tackling the challenging situation posed by both bacterial resistance as well as drug tolerance due to biofilm formation.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Spermidine/analogs & derivatives , Amino Acids/chemistry , Amino Acids/pharmacology , Bacteria/growth & development , Bacterial Infections/drug therapy , Biofilms/growth & development , Hemolysis/drug effects , Humans , Spermidine/chemistry , Spermidine/pharmacology
6.
J Nanosci Nanotechnol ; 13(7): 4969-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23901518

ABSTRACT

A simple chemical route has been applied for the preparation of quasi-spherical silver (Ag) nanoparticles (NPs) with average diameter of 265 and 8 nm. The as prepared products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. Ag NPs immobilized on glassy carbon (GC) electrode showed a superior electrocatalytic activity for the reduction of hydrogen peroxide (H2O2) in aqueous medium. The fabricated electrode was also applied for the amperometric detection of H2O2 and showed a favorable response at an applied potential of -0.5 V (vs. Ag/AgCl). The results demonstrate that the fabricated electrode has potential application for hydrogen peroxide sensor.


Subject(s)
Carbon/chemistry , Conductometry/instrumentation , Electrodes , Hydrogen Peroxide/analysis , Metal Nanoparticles/chemistry , Silver/chemistry , Catalysis , Equipment Design , Equipment Failure Analysis , Hydrogen Peroxide/chemistry , Metal Nanoparticles/ultrastructure
7.
Cell Rep ; 42(10): 113176, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37773750

ABSTRACT

MCL-1 is a high-priority target due to its dominant role in the pathogenesis and chemoresistance of cancer, yet clinical trials of MCL-1 inhibitors are revealing toxic side effects. MCL-1 biology is complex, extending beyond apoptotic regulation and confounded by its multiple isoforms, its domains of unresolved structure and function, and challenges in distinguishing noncanonical activities from the apoptotic response. We find that, in the presence or absence of an intact mitochondrial apoptotic pathway, genetic deletion or pharmacologic targeting of MCL-1 induces DNA damage and retards cell proliferation. Indeed, the cancer cell susceptibility profile of MCL-1 inhibitors better matches that of anti-proliferative than pro-apoptotic drugs, expanding their potential therapeutic applications, including synergistic combinations, but heightening therapeutic window concerns. Proteomic profiling provides a resource for mechanistic dissection and reveals the minichromosome maintenance DNA helicase as an interacting nuclear protein complex that links MCL-1 to the regulation of DNA integrity and cell-cycle progression.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Apoptosis , Proteomics , Antineoplastic Agents/pharmacology , DNA Damage , Cell Line, Tumor
8.
Cell Rep ; 41(1): 111445, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36198266

ABSTRACT

MCL-1 is an anti-apoptotic BCL-2 family protein essential for survival of diverse cell types and is a major driver of cancer and chemoresistance. The mechanistic basis for the oncogenic supremacy of MCL-1 among its anti-apoptotic homologs is unclear and implicates physiologic roles of MCL-1 beyond apoptotic suppression. Here we find that MCL-1-dependent hematologic cancer cells specifically rely on fatty acid oxidation (FAO) as a fuel source because of metabolic wiring enforced by MCL-1 itself. We demonstrate that FAO regulation by MCL-1 is independent of its anti-apoptotic activity, based on metabolomic, proteomic, and genomic profiling of MCL-1-dependent leukemia cells lacking an intact apoptotic pathway. Genetic deletion of Mcl-1 results in transcriptional downregulation of FAO pathway proteins such that glucose withdrawal triggers cell death despite apoptotic blockade. Our data reveal that MCL-1 is a master regulator of FAO, rendering MCL-1-driven cancer cells uniquely susceptible to treatment with FAO inhibitors.


Subject(s)
Neoplasms , Proteomics , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Fatty Acids , Glucose , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
9.
ACS Infect Dis ; 6(4): 703-714, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32058691

ABSTRACT

The role of molecular arrangement of hydrophobic and hydrophilic groups for designing membrane-active molecules remains largely ambiguous. To explore this aspect, herein we report a series of membrane-active small molecules by varying the spatial distribution of hydrophobic groups. The two terminal amino groups of linear triamines such as diethylene triamine, bis(trimethylene)triamine, and bis(hexamethylene)triamine were conjugated with cationic amino acids bearing variable side chain hydrophobicity (such as diaminobutyric acid, ornithine, and lysine). The hydrophobicity was also modulated through conjugation of different long chain fatty acids with the central secondary amino group of the triamine. Molecules with constant backbone hydrophobicity displayed an enhanced antibacterial activity and decreased hemolytic activity upon increasing the side chain hydrophobicity of amino acids. On the other hand, increased hydrophobicity in the backbone introduced a slight hemolytic activity but a higher increment in antibacterial activity, resulting in better selective antibacterial compounds. The optimized lead compound derived from structure-activity-relationship (SAR) studies was the dodecanoyl analogue of a lysine series of compounds consisting of bis(hexamethylene)triamine as the backbone. This compound was active against various Gram-positive and Gram-negative bacteria at a low concentration (MIC ranged between 3.1 and 6.3 µg/mL) and displayed low toxicity toward mammalian cells (HC50 = 890 µg/mL and EC50 against HEK = 85 µg/mL). Additionally, it was able to kill metabolically inactive bacterial cells and eradicate preformed biofilms of MRSA. This compound showed excellent activity in a mouse model of skin infection with reduction of ∼4 log MRSA burden at 40 mg/kg dose without any sign of skin toxicity even at 200 mg/kg. More importantly, it revealed potent efficacy in an ex vivo model of human skin infection (with reduction of 85% MRSA burden at 50 µg/mL), which indicates great potential of the compound as an antibacterial agent to treat skin infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydrophobic and Hydrophilic Interactions , Skin Diseases, Bacterial/drug therapy , Small Molecule Libraries/chemistry , Amino Acids/chemistry , Animals , Anti-Bacterial Agents/chemistry , Female , HEK293 Cells , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Structure-Activity Relationship
10.
Sci Transl Med ; 9(392)2017 05 31.
Article in English | MEDLINE | ID: mdl-28566423

ABSTRACT

Efficient delivery of therapeutic nanoparticles (TNPs) to tumors is critical in improving efficacy, yet strategies that universally maximize tumoral targeting by TNP modification have been difficult to achieve in the clinic. Instead of focusing on TNP optimization, we show that the tumor microenvironment itself can be therapeutically primed to facilitate accumulation of multiple clinically relevant TNPs. Building on the recent finding that tumor-associated macrophages (TAM) can serve as nanoparticle drug depots, we demonstrate that local tumor irradiation substantially increases TAM relative to tumor cells and, thus, TNP delivery. High-resolution intravital imaging reveals that after radiation, TAM primarily accumulate adjacent to microvasculature, elicit dynamic bursts of extravasation, and subsequently enhance drug uptake in neighboring tumor cells. TAM depletion eliminates otherwise beneficial radiation effects on TNP accumulation and efficacy, and controls with unencapsulated drug show that radiation effects are more pronounced with TNPs. Priming with combined radiation and cyclophosphamide enhances vascular bursting and tumoral TNP concentration, in some cases leading to a sixfold increase of TNP accumulation in the tumor, reaching 6% of the injected dose per gram of tissue. Radiation therapy alters tumors for enhanced TNP delivery in a TAM-dependent fashion, and these observations have implications for the design of next-generation tumor-targeted nanomaterials and clinical trials for adjuvant strategies.


Subject(s)
Drug Delivery Systems , Macrophages/pathology , Nanoparticles/chemistry , Neoplasms/blood supply , Neoplasms/radiotherapy , Animals , Cell Count , Cell Line, Tumor , Chemistry, Pharmaceutical , Combined Modality Therapy , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Extravasation of Diagnostic and Therapeutic Materials/pathology , Humans , Intravital Microscopy , Macrophages/drug effects , Macrophages/radiation effects , Mice, Nude , Neoplasms/drug therapy , Permeability , Phagocytes/drug effects , Phagocytes/pathology , Phagocytes/radiation effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL