Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Risk Anal ; 44(7): 1681-1699, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38110191

ABSTRACT

The Horn of Africa Drylands are increasingly experiencing severe droughts, which impose a threat on traditional livelihood strategies. Understanding adaptation behavior in rural communities is key to helping reduce the impact of these droughts. We investigate adaptation behavior by assessing four established economic and social psychological theories on decision making under risk: expected utility theory (EUT), rank dependent utility theory (RDU), protection motivation theory (PMT), and theory of planned behavior (PMT). To measure adaptation behavior and the theory constructs, we conducted a household survey in Kenya (N = 502). Regression analysis shows that the economic theories (EUT and RDU) have the best fit for our data. Risk and time preferences are found to play an important role in adaptation decisions. An analysis of differences in decision making for distinct types of adaptation measures shows that risk averse (agro-)pastoralists are more likely to implement adaptation measures that are adjustments to their current livelihood practices, and less willing to invest in adaptation measures that require a shift to other livelihood activities. Moreover, we find significant effects for elements of the social psychological theories (PMT and TPB). A person's belief in their own ability to implement an adaptation measure (perceived self-efficacy) and adaptation by family and friends are important factors in explaining adaptation decisions. Finally, we find that the type of adaptation measures that people implement is influenced by, among others, gender, education level, access to financial resources, and access to government support or aid. Our analysis gives insights into the drivers of individual adaptation decisions, which can enhance policies promoting adaptation of dryland communities.


Subject(s)
Decision Making , Droughts , Rural Population , Kenya , Humans , Adaptation, Psychological , Male , Female , Adult
2.
Risk Anal ; 43(2): 405-422, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35436005

ABSTRACT

Coastal flood risk is expected to increase as a result of climate change effects, such as sea level rise, and socioeconomic growth. To support policymakers in making adaptation decisions, accurate flood risk assessments that account for the influence of complex adaptation processes on the developments of risks are essential. In this study, we integrate the dynamic adaptive behavior of homeowners within a flood risk modeling framework. Focusing on building-level adaptation and flood insurance, the agent-based model (DYNAMO) is benchmarked with empirical data for New York City, USA. The model simulates the National Flood Insurance Program (NFIP) and frequently proposed reforms to evaluate their effectiveness. The model is applied to a case study of Jamaica Bay, NY. Our results indicate that risk-based premiums can improve insurance penetration rates and the affordability of insurance compared to the baseline NFIP market structure. While a premium discount for disaster risk reduction incentivizes more homeowners to invest in dry-floodproofing measures, it does not significantly improve affordability. A low interest rate loan for financing risk-mitigation investments improves the uptake and affordability of dry-floodproofing measures. The benchmark and sensitivity analyses demonstrate how the behavioral component of our model matches empirical data and provides insights into the underlying theories and choices that autonomous agents make.

3.
J Environ Manage ; 301: 113750, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34597953

ABSTRACT

Conventional green roofs have often been criticised for their limited water buffer capacity during extreme rainfall events and for their susceptibility to droughts when additional irrigation is unavailable. One solution to these challenges is to create an extra blue water retention layer underneath the green layer. Blue-green roofs allow more stormwater to be stored, and the reservoir can act as a water source for the green layer throughout capillary rises. An automated valve regulates the water level of the system. It can be opened to drain water when extreme precipitation is expected. Therefore, the water buffer capacity of the system during extreme rainfall events can be maximised by integrating precipitation forecasts as triggers for the operation of the valve. However, the added value of this forecast-based operation is yet unknown. Accordingly, in this study, we design and evaluate a hydrological blue-green roof model that utilises precipitation forecasts. We test its performance to capture (extreme) precipitation and to increase evapotranspiration and evaporative cooling under a variety of precipitation forecast-based decision rules. We show that blue-green roofs can capture between 70 % and 97 % of extreme precipitation (>20 mm/h) when set to anticipate ensemble precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). This capture ratio is considerably higher than that of a conventional green roof without extra water retention (12 %) or that of a blue-green roof that does not use forecast information (i.e., valve always closed; 59 %). Moreover, blue-green roofs allow for high evapotranspiration rates relative to potential evapotranspiration on hot summer days (around 70 %), which is higher than from conventional green roofs (30 %). This serves to underscore the higher capacity of blue-green roofs to reduce heat stress. Using the city of Amsterdam as a case study, we show the high upscaling potential of the concept: on average, potentially suitable flat roofs cover 13.3 % of the total area of the catchments that are susceptible to pluvial flood risk. If the 90th percentile of the ECMWF forecast is used, an 84 % rainfall capture ratio can translate into capturing 11 % of rainfall in flood-prone urban catchments in Amsterdam.


Subject(s)
Rain , Water Movements , Cities , Conservation of Natural Resources , Hydrology
4.
J Environ Manage ; 320: 115724, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35930877

ABSTRACT

Nature-based solutions may actively reduce hydro-meteorological risks in urban areas as a part of climate change adaptation. However, the main reason for the increasing uptake of this type of solution is their many benefits for the local inhabitants, including recreational value. Previous studies on recreational value focus on studies of existing nature sites that are often much larger than what is considered as new NBS for flood adaptation studies in urban areas. We thus prioritized studies with smaller areas and nature types suitable for urban flood adaptation and divided them into four common nature types for urban flood adaptation: sustainable urban drainage systems, city parks, nature areas and rivers. We identified 23 primary valuation studies, including both stated and revealed preference studies, and derived two value transfer functions based on meta-regression analysis on existing areas. We investigated trends between values and variables and found that for the purpose of planning of new NBS the size of NBS and population density were determining factors of recreational value. For existing NBS the maximum travelling distance may be included as well. We find that existing state-of-the-art studies overestimate the recreational with more than a factor of 4 for NBS sizes below 5 ha. Our results are valid in a European context for nature-based solutions below 250 ha and can be applied across different NBS types and sizes.


Subject(s)
Climate Change , Floods , Cities , Meteorology , Rivers
5.
Risk Anal ; 41(1): 37-55, 2021 01.
Article in English | MEDLINE | ID: mdl-32830337

ABSTRACT

Damage models for natural hazards are used for decision making on reducing and transferring risk. The damage estimates from these models depend on many variables and their complex sometimes nonlinear relationships with the damage. In recent years, data-driven modeling techniques have been used to capture those relationships. The available data to build such models are often limited. Therefore, in practice it is usually necessary to transfer models to a different context. In this article, we show that this implies the samples used to build the model are often not fully representative for the situation where they need to be applied on, which leads to a "sample selection bias." In this article, we enhance data-driven damage models by applying methods, not previously applied to damage modeling, to correct for this bias before the machine learning (ML) models are trained. We demonstrate this with case studies on flooding in Europe, and typhoon wind damage in the Philippines. Two sample selection bias correction methods from the ML literature are applied and one of these methods is also adjusted to our problem. These three methods are combined with stochastic generation of synthetic damage data. We demonstrate that for both case studies, the sample selection bias correction techniques reduce model errors, especially for the mean bias error this reduction can be larger than 30%. The novel combination with stochastic data generation seems to enhance these techniques. This shows that sample selection bias correction methods are beneficial for damage model transfer.

6.
Glob Environ Change ; 48: 97-107, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29606806

ABSTRACT

Extreme climatic events are likely to become more frequent owing to global warming. This may put additional stress on critical infrastructures with typically long life spans. However, little is known about the risks of multiple climate extremes on critical infrastructures at regional to continental scales. Here we show how single- and multi-hazard damage to energy, transport, industrial, and social critical infrastructures in Europe are likely to develop until the year 2100 under the influence of climate change. We combine a set of high-resolution climate hazard projections, a detailed representation of physical assets in various sectors and their sensitivity to the hazards, and more than 1100 records of losses from climate extremes in a prognostic modelling framework. We find that damages could triple by the 2020s, multiply six-fold by mid-century, and amount to more than 10 times present damage of €3.4 billion per year by the end of the century due only to climate change. Damage from heatwaves, droughts in southern Europe, and coastal floods shows the most dramatic rise, but the risks of inland flooding, windstorms, and forest fires will also increase in Europe, with varying degrees of change across regions. Economic losses are highest for the industry, transport, and energy sectors. Future losses will not be incurred equally across Europe. Southern and south-eastern European countries will be most affected and, as a result, will probably require higher costs of adaptation. The findings of this study could aid in prioritizing regional investments to address the unequal burden of impacts and differences in adaptation capacities across Europe.

7.
Proc Natl Acad Sci U S A ; 112(18): E2271-80, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25902499

ABSTRACT

The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whereas the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is still lacking. Due to this knowledge gap, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. We show for the first time (to our knowledge) that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We find that rising per-capita income coincided with a global decline in vulnerability between 1980 and 2010, which is reflected in decreasing mortality and losses as a share of the people and gross domestic product exposed to inundation. The results also demonstrate that vulnerability levels in low- and high-income countries have been converging, due to a relatively strong trend of vulnerability reduction in developing countries. Finally, we present projections of flood losses and fatalities under 100 individual scenario and model combinations, and three possible global vulnerability scenarios. The projections emphasize that materialized flood risk largely results from human behavior and that future risk increases can be largely contained using effective disaster risk reduction strategies.


Subject(s)
Acclimatization , Climate Change , Disasters , Floods , Climate , Geography , Humans , Models, Theoretical , Poverty , Risk , Rivers , Social Class
8.
Risk Anal ; 38(6): 1239-1257, 2018 06.
Article in English | MEDLINE | ID: mdl-29148082

ABSTRACT

Protection motivation theory (PMT) has become a popular theory to explain the risk-reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals' coping appraisals of natural hazards. More insight into flood-coping appraisals of PMT, therefore, are needed to better understand the decision-making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood-prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood-coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood-coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood-coping appraisals. This suggests that social norms and networks play an important role in flood-preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood-coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects.

9.
Biochim Biophys Acta Proteins Proteom ; 1865(7): 936-945, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27760390

ABSTRACT

The Morris water maze (MWM) spatial learning task has been demonstrated to involve a cognitive switch of action control to serve the transition from an early towards a late learning phase. However, the molecular mechanisms governing this switch are largely unknown. We employed MALDI MS imaging (MSI) to screen for changes in expression of small proteins in brain structures implicated in the different learning phases. We compared mice trained for 3days and 30days in the MWM, reflecting an early and a late learning phase in relation to the acquisition of a spatial learning task. An ion with m/z of 6724, identified as PEP-19/pcp4 by top-down tandem MS, was detected at higher intensity in the dorsal striatum of the late learning phase group compared with the early learning phase group. In addition, mass spectrometric analysis of synaptosomes confirmed the presence of PEP-19/pcp4 at the synapse. PEP-19/pcp4 has previously been identified as a critical determinant of synaptic plasticity in locomotor learning. Our findings extend PEP-19/pcp4 function to spatial learning in the forebrain and put MSI forward as a valid and unbiased research strategy for the discovery and identification of the molecular machinery involved in learning, memory and synaptic plasticity. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.


Subject(s)
Nerve Tissue Proteins/metabolism , Spatial Learning/physiology , Synapses/metabolism , Synaptosomes/metabolism , Animals , Brain/metabolism , Brain/physiology , Female , Learning Disabilities/metabolism , Learning Disabilities/pathology , Locomotion/physiology , Maze Learning/physiology , Memory/physiology , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
10.
Mol Ther ; 24(5): 890-902, 2016 05.
Article in English | MEDLINE | ID: mdl-26775809

ABSTRACT

A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases.


Subject(s)
Inflammation/drug therapy , Matrix Metalloproteinase 8/metabolism , Matrix Metalloproteinase Inhibitors/administration & dosage , Single-Domain Antibodies/administration & dosage , Animals , Disease Models, Animal , Electroporation , Inflammation/chemically induced , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/therapeutic use , Mice , Mice, Knockout , Molecular Docking Simulation , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/therapeutic use
11.
Risk Anal ; 37(10): 1977-1992, 2017 10.
Article in English | MEDLINE | ID: mdl-27893160

ABSTRACT

Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks.

12.
Sci Rep ; 14(1): 6108, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480763

ABSTRACT

The Caribbean region is prone to the strong winds and low air pressures of tropical cyclones and their corresponding storm surge that driving coastal flooding. To protect coastal communities from the impacts of tropical cyclones, it is important to understand how this impact of tropical cyclones might change towards the future. This study applies the storyline approach to show what tropical cyclones Maria (2017) and Dorian (2019) could look like in a 2 °C and 3.4 °C warmer future climate. These two possible future climates are simulated with a high-resolution regional climate model using the pseudo global warming approach. Using the climate response from these simulations we apply a Delta-quantile mapping technique to derive future changes in wind speed and mean sea level pressure. We apply this Delta technique to tropical cyclones Maria and Dorian's observed wind and pressure fields to force a hydrodynamic model for simulating storm surge levels under historical and future climate conditions. Results show that the maximum storm surge heights of Maria and Dorian could increase by up to 0.31 m and 0.56 m, respectively. These results clearly show that future changes in storm surge heights are not negligible compared to end-of-the-century sea level rise projections, something that is sometimes overlooked in large-scale assessments of future coastal flood risk.

13.
Sci Total Environ ; 917: 170239, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278243

ABSTRACT

In this study, we present a novel modeling framework that provides a stylized representation of coastal adaptation and migration dynamics under sea level rise (SLR). We develop an agent-based model that simulates household and government agents adapting to shoreline change and increasing coastal flood risk. This model is coupled to a gravity-based model of migration to simulate coastward migration. Household characteristics are derived from local census data from 2015, and household decisions are calibrated based on empirical survey data on household adaptation in France. We integrate projections of shoreline retreat and flood inundation levels under two Representative Concentration Pathways (RCPs) and account for socioeconomic development under two Shared Socioeconomic Pathways (SSPs). The model is then applied to simulate coastal adaptation and migration between 2015 and 2080. Our results indicate that without coastal adaptation, SLR could drive the cumulative net outmigration of 13,100 up to as many as 21,700 coastal inhabitants between 2015 and 2080 under SSP2-RCP4.5 and SSP5-RCP8.5, respectively. This amounts to between 3.0 %-3.7 % of the coastal population residing in the 1/100-year flood zone in 2080 under a scenario of SLR. We find that SLR-induced migration is largely dependent on the adaptation strategies pursued by households and governments. Household implementation of floodproofing measures combined with beach renourishment reduces the projected SLR-induced migration by 31 %-36 % when compared to a migration under a scenario of no adaptation. A sensitivity analysis indicates that the effect of beach renourishment on SLR-induced migration largely depends on the level of coastal flood protection offered by sandy beaches. By explicitly modeling household behavior combined with governmental protection strategies under increasing coastal risks, the framework presented in this study allows for a comparison of climate change impacts on coastal communities under different adaptation strategies.

14.
Risk Anal ; 33(5): 772-88, 2013 May.
Article in English | MEDLINE | ID: mdl-23383711

ABSTRACT

The devastating impact by Hurricane Sandy (2012) again showed New York City (NYC) is one of the most vulnerable cities to coastal flooding around the globe. The low-lying areas in NYC can be flooded by nor'easter storms and North Atlantic hurricanes. The few studies that have estimated potential flood damage for NYC base their damage estimates on only a single, or a few, possible flood events. The objective of this study is to assess the full distribution of hurricane flood risk in NYC. This is done by calculating potential flood damage with a flood damage model that uses many possible storms and surge heights as input. These storms are representative for the low-probability/high-impact flood hazard faced by the city. Exceedance probability-loss curves are constructed under different assumptions about the severity of flood damage. The estimated flood damage to buildings for NYC is between US$59 and 129 millions/year. The damage caused by a 1/100-year storm surge is within a range of US$2 bn-5 bn, while this is between US$5 bn and 11 bn for a 1/500-year storm surge. An analysis of flood risk in each of the five boroughs of NYC finds that Brooklyn and Queens are the most vulnerable to flooding. This study examines several uncertainties in the various steps of the risk analysis, which resulted in variations in flood damage estimations. These uncertainties include: the interpolation of flood depths; the use of different flood damage curves; and the influence of the spectra of characteristics of the simulated hurricanes.


Subject(s)
Floods , Models, Theoretical , Probability , Risk Assessment , Cyclonic Storms , New York City , Uncertainty
15.
Sci Total Environ ; 898: 165506, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37454848

ABSTRACT

The Horn of Africa faces an ongoing multi-year drought due to five consecutive failed rainy seasons, a novel climatic event with unpreceded impacts. Beyond the starvation of millions of livestock, close to 23 million individuals in the region are currently facing high food insecurity in Kenya, Somalia and Ethiopia alone. The severity of these impacts calls for the urgent upscaling and optimisation of early action for droughts. However, drought research focuses mainly on meteorological and hydrological forecasting, while early action triggered by forecasts is seldom addressed. This study investigates the potential for early action for droughts by using seasonal forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 system for the March-April-May (MAM) and October-November-December (OND) rainy seasons. We show that these seasonal rainfall forecasts reflect major on-the-ground impacts, which we identify from drought surveillance data from 21 counties in Kenya. Subsequently, we show that the SEAS5 drought forecasts with short lead times have substantial potential economic value (PEV) when used to trigger action before the OND season across the region (PEVmax = 0.43). Increasing lead time to one or two months ahead of the season decreases PEV, but the benefits persist (PEVmax = 0.2). Outside of Kenya, MAM forecasts have limited value. The existence of opportunities for early action during the OND season in Kenya and Somalia is demonstrated by high PEV values, with some regions recording PEVmax values close to 0.8. To illustrate the practical value of this research, we point to a dilemma that a pastoralist in the Kenyan drylands faces when deciding whether to adopt early livestock destocking. This study underscores the importance to determine the value of early actions for forecast users with different action characteristics, and to disseminate this value alongside the standard forecasts themselves. This allows users to trigger effective actions before drought impacts develop.


Subject(s)
Droughts , Weather , Humans , Seasons , Kenya , Rain , Forecasting
16.
Nat Commun ; 14(1): 2630, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149629

ABSTRACT

Climate change-induced sea-level rise will lead to an increase in internal migration, whose intensity and spatial patterns will depend on the amount of sea-level rise; future socioeconomic development; and adaptation strategies pursued to reduce exposure and vulnerability to sea-level rise. To explore spatial feedbacks between these drivers, we combine sea-level rise projections, socioeconomic projections, and assumptions on adaptation policies in a spatially-explicit model ('CONCLUDE'). Using the Mediterranean region as a case study, we find up to 20 million sea-level rise-related internal migrants by 2100 if no adaptation policies are implemented, with approximately three times higher migration in southern and eastern Mediterranean countries compared to northern Mediterranean countries. We show that adaptation policies can reduce the number of internal migrants by a factor of 1.4 to 9, depending on the type of strategies pursued; the implementation of hard protection measures may even lead to migration towards protected coastlines. Overall, spatial migration patterns are robust across all scenarios, with out-migration from a narrow coastal strip and in-migration widely spread across urban settings. However, the type of migration (e.g. proactive/reactive, managed/autonomous) depends on future socioeconomic developments that drive adaptive capacity, calling for decision-making that goes well beyond coastal issues.

17.
Nat Commun ; 14(1): 7483, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980338

ABSTRACT

Future flood risk assessments typically focus on changing hazard conditions as a result of climate change, where flood exposure is assumed to remain static or develop according to exogenous scenarios. However, this study presents a method to project future riverine flood risk in Europe by simulating population growth in floodplains, where households' settlement location decisions endogenously depend on environmental and institutional factors, including amenities associated with river proximity, riverine flood risk, and insurance against this risk. Our results show that population growth in European floodplains and, consequently, rising riverine flood risk are considerably higher when the dis-amenity caused by flood risk is offset by insurance. This outcome is particularly evident in countries where flood risk is covered collectively and notably less where premiums reflect the risk of individual households.


Subject(s)
Floods , Population Growth , Europe , Rivers , Risk Assessment
18.
Sci Rep ; 13(1): 4176, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914726

ABSTRACT

In this study, we couple an integrated flood damage and agent-based model (ABM) with a gravity model of internal migration and a flood risk module (DYNAMO-M) to project household adaptation and migration decisions under increasing coastal flood risk in France. We ground the agent decision rules in a framework of subjective expected utility theory. This method addresses agent's bounded rationality related to risk perception and risk aversion and simulates the impact of push, pull, and mooring factors on migration and adaptation decisions. The agents are parameterized using subnational statistics, and the model is calibrated using a household survey on adaptation uptake. Subsequently, the model simulates household adaptation and migration based on increasing coastal flood damage from 2015 until 2080. A medium population growth scenario is used to simulate future population development, and sea level rise (SLR) is assessed for different climate scenarios. The results indicate that SLR can drive migration exceeding 8000 and 10,000 coastal inhabitants for 2080 under the Representative Concentration Pathways 4.5 and 8.5, respectively. Although household adaptation to flood risk strongly impacts projected annual flood damage, its impact on migration decisions is small and falls within the 90% confidence interval of model runs. Projections of coastal migration under SLR are most sensitive to migration costs and coastal flood protection standards, highlighting the need for better characterization of both in modeling exercises. The modeling framework demonstrated in this study can be upscaled to the global scale and function as a platform for a more integrated assessment of SLR-induced migration.

19.
iScience ; 25(10): 105219, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274936

ABSTRACT

Climate change impacts are increasingly complex owing to compounding, interacting, and cascading risks across sectors. However, approaches to support Disaster Risk Management (DRM) addressing the underlying (uncertain) risk driver interactions are still lacking. We tailor the approach of Dynamic Adaptive Policy Pathways (DAPP) to DAPP-MR to design DRM pathways for complex, dynamic multi-risk in multi-sector systems. We review the recent multi-hazard and multi-sector research to identify relevant aspects of multi-risk management frameworks and illustrate the suitability of DAPP-MR using a stylized case. It is found that rearranging the analytical steps of DAPP by introducing three iteration stages can help to capture interactions, trade-offs, and synergies across hazards and sectors. We show that DAPP-MR may guide multi-sector processes to stepwise integrate knowledge toward multi-risk management. DAPP-MR can be seen as an analytical basis and first step toward an operational, integrative, and interactive framework for short-to long-term multi-risk DRM.

20.
Article in English | MEDLINE | ID: mdl-35865647

ABSTRACT

Sea-level rise (SLR) threatens millions of people living in coastal areas through permanent inundation and other SLR-related hazards. Migration is one way for people to adapt to these coastal changes, but presents an enormous policy challenge given the number of people affected. Knowledge about the relationship between SLR-related hazards and migration is therefore important to allow for anticipatory policymaking. In recent years, an increasing number of empirical studies have investigated, using survey or census data, how SLR-related hazards including flooding, salinization, and erosion together with non-environmental factors influence migration behavior. In this article, we provide a systematic literature review of this empirical work. Our review findings indicate that flooding is not necessarily associated with increased migration. Severe flood events even tend to decrease long-term migration in developing countries, although more research is needed to better understand the underpinnings of this finding. Salinization and erosion do generally lead to migration, but the number of studies is sparse. Several non-environmental factors including wealth and place attachment influence migration alongside SLR-related hazards. Based on the review, we propose a research agenda by outlining knowledge gaps and promising avenues for future research on this topic. Promising research avenues include using behavioral experiments to investigate migration behavior under future SLR scenarios, studying migration among other adaptation strategies, and complementing empirical research with dynamic migration modeling. We conclude that more empirical research on the SLR-migration nexus is needed to properly understand and anticipate the complex dynamics of migration under SLR, and to design adequate policy responses. This article is categorized under: Climate Economics < Aggregation Techniques for Impacts and Mitigation CostsVulnerability and Adaptation to Climate Change < Learning from Cases and AnalogiesAssessing Impacts of Climate Change < Evaluating Future Impacts of Climate Change.

SELECTION OF CITATIONS
SEARCH DETAIL