Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 13(2): 725-31, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21049127

ABSTRACT

Properties of the room-temperature liquid complex salt [Ag(propene)(x)][Tf(2)N] have been studied to probe its suitability for acting as active separation layer in immobilised liquid membrane (ILM) concepts for propane/propene separation. The pressure/temperature range of complex formation has been determined and the thermal properties of Ag[Tf(2)N] and [Ag(propene)(x)][Tf(2)N] have been studied by DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis) measurements. Pressure dependent measurements of solubility and diffusivity showed that the observed membrane selectivity is dominated by the solubility selectivity. The self-diffusion coefficient of propene is always smaller compared to propane as propene is temporarily bound to the silver ion in the [Ag(propene)(x)][Tf(2)N] ionic liquid.

2.
ChemistryOpen ; 10(2): 141-152, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33565717

ABSTRACT

Low-temperature synthesis in ionic liquids (ILs) offers an efficient route for the preparation of metal oxide nanomaterials with tailor-made properties in a water-free environment. In this work, we investigated the role of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C4 C1 Pyr][NTf2 ] in the synthesis of cobalt oxide nanoparticles from the molecular precursor Co2 (CO)8 with ozone. We performed a model study in ultra-clean, ultrahigh vacuum (UHV) conditions by infrared reflection absorption spectroscopy (IRAS) using Au(111) as a substrate. Exposure of the pure precursor to ozone at low temperatures results in the oxidation of the first layers, leading to the formation of a disordered Cox Oy passivation layer. Similar protection to ozone is also achieved by deposition of an IL layer onto a precursor film prior to ozone exposure. With increasing temperature, the IL gets permeable for ozone and a cobalt oxide film forms at the IL/precursor interface. We show that the interaction with the IL mediates the oxidation and leads to a more densely packed Cox Oy film compared to a direct oxidation of the precursor.

3.
ChemCatChem ; 7(5): 766-775, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26413174

ABSTRACT

Herein, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water-gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240 h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5 wt %.

4.
ChemSusChem ; 7(9): 2516-26, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25124120

ABSTRACT

We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%.


Subject(s)
Aluminum Oxide/chemistry , Methanol/chemistry , Platinum/chemistry , Salts/chemistry , Steam , Carbon Monoxide/chemistry , Carbonates/chemistry , Catalysis , Hydroxides/chemistry , Kinetics , Potassium/chemistry , Potassium Compounds/chemistry , Volatilization
6.
Adv Mater ; 24(31): 4306-10, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22718429

ABSTRACT

An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide.


Subject(s)
Alkenes/chemistry , Ionic Liquids/chemistry , Nanocomposites/chemistry , Paraffin/chemistry , Calorimetry, Differential Scanning , Membranes, Artificial , Propane/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL