Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Faraday Discuss ; 232(0): 419-434, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34533138

ABSTRACT

Biophysical and structural studies of peptide-lipid interactions, peptide topology and dynamics have changed our view of how antimicrobial peptides insert and interact with membranes. Clearly, both peptides and lipids are highly dynamic, and change and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a consequence, peptides and lipids can form a wide variety of supramolecular assemblies in which the more hydrophobic sequences preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay intercalated at the membrane interface. Although the membranes are soft and can adapt, at increasing peptide density they cause pronounced disruptions of the phospholipid fatty acyl packing. At even higher local or global concentrations the peptides cause transient membrane openings, rupture and ultimately lysis. Interestingly, mixtures of peptides such as magainin 2 and PGLa, which are stored and secreted naturally as a cocktail, exhibit considerably enhanced antimicrobial activities when investigated together in antimicrobial assays and also in pore forming experiments applied to biophysical model systems. Our most recent investigations reveal that these peptides do not form stable complexes but act by specific lipid-mediated interactions and the nanoscale properties of phospholipid bilayers.


Subject(s)
Antimicrobial Peptides , Lipids , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Magainins , Molecular Conformation
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201610

ABSTRACT

The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and ß-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed.


Subject(s)
Cell Membrane/metabolism , Huntingtin Protein/metabolism , Peptides/metabolism , Benzothiazoles/chemistry , Circular Dichroism , Dynamic Light Scattering , Exons , Fluorescence , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Lipid Bilayers , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptides/chemistry
3.
Biochemistry ; 58(24): 2782-2795, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31120242

ABSTRACT

The p24 proteins play an important role in the secretory pathway where they selectively connect various cargo to other proteins, thereby being involved in the controlled assembly and disassembly of the coat protein complexes and lipid sorting. Recently, a highly selective lipid interaction motif has been identified within the p24 transmembrane domain (TMD) that recognizes the combination of the sphingomyelin headgroup and the exact length of the C18 fatty acyl chain (SM-C18). Here, we present investigations of the structure, dynamics, and sphingomyelin interactions of the p24 transmembrane region using circular dichroism, tryptophan fluorescence, and solid-state nuclear magnetic resonance (NMR) spectroscopies of the polypeptides and the surrounding lipids. Membrane insertion and/or conformation of the TMD is strongly dependent on the membrane lipid composition where the transmembrane helical insertion is strongest in the presence of 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) and SM-C18. By analyzing solid-state NMR angular restraints from a large number of labeled sites, we have found a tilt angle of 19° for the transmembrane helical domain at a peptide-to-lipid ratio of 1 mol %. Only minor changes in the solid-state NMR spectra are observed due to the presence of SM-C18; the only visible alterations are associated with the SM-C18 recognition motif close to the carboxy-terminal part of the hydrophobic transmembrane region in the proximity of the SM headgroup. Finally, the deuterium order parameters of POPC- d31 were nearly unaffected by the presence of SM-C18 or the polypeptide alone but decreased noticeably when the sphingomyelin and the polypeptide were added in combination.


Subject(s)
Membrane Proteins/chemistry , Peptide Fragments/chemistry , Sphingomyelins/chemistry , Amino Acid Sequence , Humans , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Proteins/metabolism , Micelles , Peptide Fragments/chemical synthesis , Peptide Fragments/metabolism , Phosphatidylcholines/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Sphingomyelins/metabolism
4.
J Membr Biol ; 252(4-5): 371-384, 2019 10.
Article in English | MEDLINE | ID: mdl-31187155

ABSTRACT

The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.


Subject(s)
HLA-DQ alpha-Chains/chemistry , HLA-DQ beta-Chains/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Amino Acid Motifs , HLA-DQ alpha-Chains/metabolism , HLA-DQ beta-Chains/metabolism , Humans , Lipid Bilayers/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Domains
5.
Adv Exp Med Biol ; 1117: 33-64, 2019.
Article in English | MEDLINE | ID: mdl-30980352

ABSTRACT

Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cell Membrane/chemistry , Biophysics , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Magainins/chemistry , Magnetic Resonance Spectroscopy
6.
Biophys J ; 113(6): 1290-1300, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28734478

ABSTRACT

The histidine-rich designer peptide LAH4-L1 exhibits antimicrobial and potent cell-penetrating activities for a wide variety of cargo including nucleic acids, polypeptides, adeno-associated viruses, and nanodots. The non-covalent complexes formed between the peptide and cargo enter the cell via an endosomal pathway where the pH changes from neutral to acidic. Here, we investigated the membrane interactions of the peptide with phospholipid bilayers and its membrane topology using static solid-state NMR spectroscopy. Oriented 15N solid-state NMR indicates that in membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) 3:1 mol/mole and at neutral pH, the peptide adopts transmembrane topologies. Furthermore, 31P and 2H solid-state NMR spectra show that liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and POPC/POPS 3:1 liposomes retain a bilayer macroscopic phase even at the highest peptide concentrations investigated, with an oblate orientational distribution of the phospholipids at a peptide/lipid ratio of 1:5. At pH 5, as it occurs in the endosome, the alignment of LAH4-L1 at a peptide/lipid ratio of 1:25 is predominantly parallel to POPC/POPS 3:1 bilayers (prolate deformation) when at the same time it induces a considerable decrease of the deuterium order parameter of POPC/2H31-POPS 3:1. In addition, when studied in mechanically supported lipid membranes, a pronounced disordering of the phospholipid alignment is observed. In the presence of even higher peptide concentrations, lipid spectra are observed that suggest the formation of magnetically oriented or isotropic bicelles. This membrane-disruptive effect is enhanced for gel phase DMPC membranes. By protonation of the four histidines in acidic environments, the overall charge and hydrophobic moment of LAH4-L1 considerably change, and much of the peptide is released from the cargo. Thus, the amphipathic peptide sequences become available to disrupt the endosomal membrane and to assure highly efficient release from this organelle.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cell-Penetrating Peptides/chemistry , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Dimyristoylphosphatidylcholine/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry
7.
Biochemistry ; 56(32): 4269-4278, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28699734

ABSTRACT

The antimicrobial peptide GL13K encompasses 13 amino acid residues and has been designed and optimized from the salivary protein BPIFA2 to exhibit potent bacteriocidal and anti-biofilm activity against Gram-negative and Gram-positive bacteria as well as anti-lipopolysaccharide activity in vitro and in vivo. Here, the peptide was analyzed in a variety of membrane environments by circular dichroism spectroscopy and by high-resolution multidimensional solution nuclear magnetic resonance (NMR) spectroscopy. Whereas in the absence of membranes a random coil conformation predominates, the peptide adopts a helical structure from residue 5 to 11 in the presence of dodecylphosphocholine micelles. In contrast, a predominantly ß-sheet structure was observed in the presence of lipid bilayers carrying negatively charged phospholipids. Whereas 15N solid-state NMR spectra are indicative of a partial alignment of the peptide 15N-1H vector along the membrane surface, 2H and 31P solid-state NMR spectra indicate that in this configuration the peptide exhibits pronounced disordering activities on the phospholipid membrane, which is possibly related to antimicrobial action. GL13K, thus, undergoes a number of conformational transitions, including a random coil state in solution, a helical structure upon dilution at the surface of zwitterionic membranes, and ß-sheet conformations at high peptide:lipid ratios.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Salivary Proteins and Peptides/chemistry , Humans , Protein Structure, Secondary
8.
J Pept Sci ; 23(4): 320-328, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28067008

ABSTRACT

The histidine-rich designer peptides of the LAH4 family exhibit potent antimicrobial, transfection, transduction and cell-penetrating properties. They form non-covalent complexes with their cargo, which often carry a negative overall charge at pH 7.4 and include a large range of molecules and structures such as oligonucleotides, including siRNA and DNA, peptides, proteins, nanodots and adeno-associated viruses. These complexes are thought to enter the cells through an endosomal pathway where the acidification of the organelle is essential for efficient endosomal escape. Biophysical measurements indicate that, upon acidification, almost half the peptides are released from DNA cargo, leading to the suggestion of a self-promoted uptake mechanism where the liberated peptides lyse the endosomal membranes. LAH4 derivatives also help in cellular transduction using lentiviruses. Here, we compare the DNA transfection activities of LAH4 derivatives, which vary in overall charge and/or the composition in the hydrophobic core region. In addition, LAH4 is shown to mediate the transport of functional ß-galactosidase, a large tetrameric protein of about 0.5 MDa, into the cell interior. Interestingly, the LAH1 peptide efficiently imports this protein, while it is inefficient during DNA transfection assays. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , DNA/metabolism , Histidine/metabolism , Transfection/methods , beta-Galactosidase/metabolism , Cell-Penetrating Peptides/chemical synthesis , DNA/chemistry , Hep G2 Cells , Humans , Protein Transport , Tumor Cells, Cultured , beta-Galactosidase/chemistry
9.
Biophys J ; 111(10): 2162-2175, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27851940

ABSTRACT

A system based on two designed peptides, namely the cationic peptide K, (KIAALKE)3, and its complementary anionic counterpart called peptide E, (EIAALEK)3, has been used as a minimal model for membrane fusion, inspired by SNARE proteins. Although the fact that docking of separate vesicle populations via the formation of a dimeric E/K coiled-coil complex can be rationalized, the reasons for the peptides promoting fusion of vesicles cannot be fully explained. Therefore it is of significant interest to determine how the peptides aid in overcoming energetic barriers during lipid rearrangements leading to fusion. In this study, investigations of the peptides' interactions with neutral PC/PE/cholesterol membranes by fluorescence spectroscopy show that tryptophan-labeled K∗ binds to the membrane (KK∗ ∼6.2 103 M-1), whereas E∗ remains fully water-solvated. 15N-NMR spectroscopy, depth-dependent fluorescence quenching, CD-spectroscopy experiments, and MD simulations indicate a helix orientation of K∗ parallel to the membrane surface. Solid-state 31P-NMR of oriented lipid membranes was used to study the impact of peptide incorporation on lipid headgroup alignment. The membrane-immersed K∗ is found to locally alter the bilayer curvature, accompanied by a change of headgroup orientation relative to the membrane normal and of the lipid composition in the vicinity of the bound peptide. The NMR results were supported by molecular dynamics simulations, which showed that K reorganizes the membrane composition in its vicinity, induces positive membrane curvature, and enhances the lipid tail protrusion probability. These effects are known to be fusion relevant. The combined results support the hypothesis for a twofold role of K in the mechanism of membrane fusion: 1) to bring opposing membranes into close proximity via coiled-coil formation and 2) to destabilize both membranes thereby promoting fusion.


Subject(s)
Lipid Bilayers/metabolism , Membrane Fusion , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence , Cell Membrane/chemistry , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
10.
Angew Chem Int Ed Engl ; 54(38): 11133-7, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26246005

ABSTRACT

Despite significant advances in foldamer chemistry, tailored delivery systems based on foldamer architectures, which provide a high level of control over secondary structure, are curiously rare among non-viral technologies for transporting nucleic acids into cells. A potent pH-responsive, bioreducible cell-penetrating foldamer (CPF) was developed through covalent dimerization of a short (8-mer) amphipathic oligourea sequence bearing histidine-type units. This CPF exhibits a high capacity to assemble with pDNA and mediates efficient delivery of nucleic acids into the cell. Furthermore, it does not adversely affect cellular viability and was shown to compare favorably with a cognate peptide transfection agent based on His-rich sequences.


Subject(s)
Biopolymers/administration & dosage , Cell Membrane Permeability , DNA/administration & dosage , Amino Acid Sequence , Biopolymers/chemistry , Cell Line , Humans , Molecular Sequence Data
11.
Biophys J ; 107(4): 901-11, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25140425

ABSTRACT

Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods , Computer Simulation , Deuterium/chemistry , Models, Chemical , Nitrogen Radioisotopes/chemistry , Phospholipids/chemistry
12.
Langmuir ; 30(34): 10374-83, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25105913

ABSTRACT

When polypeptides bind to the membrane surface, they become confined to a restricted quasi-two-dimensional space where peptide-peptide interactions become highly relevant, and the concept of a crowded medium is appropriate. Within this crowded environment interesting effects like clustering, separation of phases, cooperative alignment, and common movements occur. Here we investigated such effects by measuring distances between fluorophore-labeled peptides in the range ≤1 nm by fluorescence self-quenching. For helical peptides with dimensions of approximately 1 × 3 nm such a small "ruler" is sensitive to the packing of the labeled peptides and thereby to their molecular arrangement. A novel approach to characterize peptide-peptide interactions within membranes is presented using the designer peptide LAH4. This sequence changes membrane topology in a controlled manner being transmembrane at neutral conditions but oriented parallel to the surface at low pH. Experimental measurements of the fluorescence self-quenching of close-by chromophores and the changes that occur upon dilution with unlabeled peptides are used to analyze the peptide distribution within the membrane surface. The data show a strong effect of electrostatic interactions and under some experimental conditions clustering of the peptides. Furthermore, the results suggest that at pH 4 the peptides arrange along the membrane surface in an ordered mesophase-like arrangement.


Subject(s)
Lipids/chemistry , Membranes, Artificial , Peptides/chemistry , Fluorescence
13.
Eur Biophys J ; 43(8-9): 347-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24895024

ABSTRACT

The membrane-association properties of the amino-terminal domain of huntingtin are accompanied by subcellular redistribution of the protein in cellular compartments. In this study we used tryptophan substitution of amino-acid residues at different positions of the huntingtin 1-17 domain (Htt17) to precisely determine, for the first time, the depth of penetration of the peptides within the lipid bilayer. Initially, secondary structure preferences and membrane association properties were quantitatively determined for several membrane lipid compositions; they were found to be closely related to those of the natural peptide, indicating that changes in the sequence had little effect on these characteristics of the domain. The tryptophan-substituted peptides became inserted into the membranes' interfacial region, with average tryptophan positions between 7.5 and 11 Å from the bilayer center, in agreement with in-plane orientation of the peptide. Participation of the very-amino terminus of the peptide in the membrane-association process was demonstrated. The results not only revealed the occurrence of association intermediates when the huntingtin 1-17 anchoring sequence became inserted into the membrane but also suggest the formation of aggregates and/or oligomers during membrane association. When inserted, the F11W site was of crucial importance in lipid anchoring and stabilization of the whole peptide, whereas the terminal residues are located close to the membrane surface. The carboxy-terminal tryptophan (F17W), which also constitutes the site of the polyglutamine extension in the natural domain, was found closest to the aqueous environment, accompanied with the highest aqueous quenching constants. These results were used to propose a refined model of lipid interactions of the huntingtin 1-17 domain.


Subject(s)
Cell Membrane/metabolism , Nerve Tissue Proteins/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Tryptophan/chemistry , Amino Acid Sequence , Amino Acid Substitution , Molecular Sequence Data , Peptide Fragments/genetics , Protein Binding , Protein Structure, Tertiary , Spectrometry, Fluorescence
14.
J Pept Sci ; 20(7): 526-36, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24909405

ABSTRACT

Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in analytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences found in nature or designed. (15)N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites labelled with (2)H3-alanine, whereas (31)P and (2)H solid-state NMR spectra of the lipids furnish valuable information on the macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of polypeptides with membrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition and peptide-to-lipid ratio will be presented.


Subject(s)
Alamethicin/chemistry , Lipid Bilayers/chemistry , Macromolecular Substances/chemistry , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Molecular Conformation , Phosphatidylcholines/chemistry , Protein Engineering , Protein Structure, Secondary
15.
Biochim Biophys Acta Biomembr ; 1866(2): 184259, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061554

ABSTRACT

The heptad repeat 1 and 2 (HR1, HR2) regions in the spike protein of SARS-CoV 2 play a key role in the fusogenic mechanism of the virus with the host cell. During the fusion process they are thought to rearrange into an interdomain multimer. Functional fragments of the heptad repeat 1 and 2 regions in the spike protein of SARS-CoV 2 were chemically synthesized, labeled with nitrofurazone (NBD) and their interactions investigated by fluorescence spectroscopy. Steady state emission, fluorescence quenching, anisotropy and lifetime measurements in combination with a fluorophore dilution scheme were used to dissect multimer formation of HR1 and HR2 in quantitative detail. In addition, the investigation of the multimers by homo-FRET (via anisotropy) and lifetime measurements reveals new insights into the mechanism of fluorophore-fluorophore interactions in biological samples.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Humans , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/chemistry , Membrane Glycoproteins/metabolism , SARS-CoV-2/metabolism
16.
Biophys Chem ; 310: 107251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678820

ABSTRACT

The cationic antimicrobial peptides PGLa and magainin 2 (Mag2) are known for their antimicrobial activity and synergistic enhancement in antimicrobial and membrane leakage assays. Further use of peptides in combinatory therapy requires knowledge of the mechanisms of action of both individual peptides and their mixtures. Here, electron paramagnetic resonance (EPR), double electron-electron resonance (DEER, also known as PELDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies were applied to study self-assembly and localization of spin-labeled PGLa and Mag2 in POPE/POPG membranes with a wide range of peptide/lipid ratios (P/L) from ∼1/1500 to 1/50. EPR and DEER data showed that both peptides tend to organize in clusters, which occurs already at the lowest peptide/lipid molar ratio of 1/1500 (0.067 mol%). For individual peptides, these clusters are quite dense with intermolecular distances of the order of ∼2 nm. In the presence of a synergistic peptide partner, these homo-clusters are transformed into lipid-diluted hetero-clusters. These clusters are characterized by a local surface density that is several times higher than expected from a random distribution. ESEEM data indicate a slightly different insertion depth of peptides in hetero-clusters when compared to homo-clusters.


Subject(s)
Antimicrobial Cationic Peptides , Lipid Bilayers , Magainins , Spin Labels , Magainins/chemistry , Magainins/pharmacology , Lipid Bilayers/chemistry , Electron Spin Resonance Spectroscopy , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
17.
Biochim Biophys Acta Biomembr ; 1866(3): 184267, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159877

ABSTRACT

NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , Lipid Bilayers , Phosphatidylethanolamines , Proteolipids , Humans , Lipid Bilayers/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Peptides/chemistry
18.
Pharmaceutics ; 15(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36986623

ABSTRACT

BACKGROUND: SAAP-148 is an antimicrobial peptide derived from LL-37. It exhibits excellent activity against drug-resistant bacteria and biofilms while resisting degradation in physiological conditions. Despite its optimal pharmacological properties, its mechanism of action at the molecular level has not been explored. METHODS: The structural properties of SAAP-148 and its interaction with phospholipid membranes mimicking mammalian and bacterial cells were studied using liquid and solid-state NMR spectroscopy as well as molecular dynamics simulations. RESULTS: SAAP-148 is partially structured in solution and stabilizes its helical conformation when interacting with DPC micelles. The orientation of the helix within the micelles was defined by paramagnetic relaxation enhancements and found similar to that obtained using solid-state NMR, where the tilt and pitch angles were determined based on 15N chemical shift in oriented models of bacterial membranes (POPE/POPG). Molecular dynamic simulations revealed that SAAP-148 approaches the bacterial membrane by forming salt bridges between lysine and arginine residues and lipid phosphate groups while interacting minimally with mammalian models containing POPC and cholesterol. CONCLUSIONS: SAAP-148 stabilizes its helical fold onto bacterial-like membranes, placing its helix axis almost perpendicular to the surface normal, thus probably acting by a carpet-like mechanism on the bacterial membrane rather than forming well-defined pores.

19.
Org Biomol Chem ; 10(7): 1440-7, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22218372

ABSTRACT

Synthetic oligomers that are derived from natural polypeptide sequences, albeit with unnatural building blocks, have attracted considerable interest in mimicking bioactive peptides and proteins. Many of those compounds adopt stable folds in aqueous environments that resemble protein structural elements. Here we have chemically prepared aliphatic oligoureas and labeled them at selected positions with (15)N for structural investigations using solid-state NMR spectroscopy. In the first step, the main tensor elements and the molecular alignment of the (15)N chemical shift tensor were analyzed. This was possible by using a two-dimensional heteronuclear chemical shift/dipolar coupling correlation experiment on a model compound that represents the chemical, and thereby also the chemical shift characteristics, of the urea bond. In the next step (15)N labeled versions of an amphipathic oligourea, that exert potent antimicrobial activities and that adopt stable helical structures in aqueous environments, were prepared. These compounds were reconstituted into oriented phospholipid bilayers and the (15)N chemical shift and (1)H-(15)N dipolar couplings of two labeled sites were determined by solid-state NMR spectroscopy. The data are indicative of an alignment of this helix parallel to the membrane surface in excellent agreement with the amphipathic character of the foldamer and consistent with previous models explaining the antimicrobial activities of α-peptides.


Subject(s)
Lipid Bilayers/chemistry , Nitrogen Isotopes/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Peptides/chemistry
20.
Proc Natl Acad Sci U S A ; 106(24): 9667-72, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19497878

ABSTRACT

The structural integrity of the ubiquitous enzyme superoxide dismutase (SOD1) relies critically on the correct coordination of Cu and Zn. Loss of these cofactors not only promotes SOD1 aggregation in vitro but also seems to be a key prerequisite for pathogenic misfolding in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We examine here the consequences of Zn(2+) loss by selectively removing the Zn site, which has been implicated as the main modulator of SOD1 stability and disease competence. After Zn-site removal, the remaining Cu ligands can coordinate a nonnative Zn(2+) ion with microM affinity in the denatured state, and then retain this ion throughout the folding reaction. Without the restriction of a metallated Zn site, however, the Cu ligands fail to correctly coordinate the nonnative Zn(2+) ion: Trapping of a water molecule causes H48 to change rotamer and swing outwards. The misligation is sterically incompatible with the native structure. As a consequence, SOD1 unfolds locally and interacts with neighboring molecules in the crystal lattice. The findings point to a critical role for the native Zn site in controlling SOD1 misfolding, and show that even subtle changes of the metal-loading sequence can render the wild-type protein the same structural properties as ALS-provoking mutations. This frustrated character of the SOD1 molecule seems to arise from a compromise between optimization of functional and structural features.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Protein Folding , Superoxide Dismutase/metabolism , Humans , Ligands , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Superoxide Dismutase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL