Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 120(38): e2306494120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37703281

ABSTRACT

Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.


Subject(s)
Promoter Regions, Genetic , Triticum , Biological Assay , Gene Expression , Mutation , Triticum/genetics
2.
Plant Biotechnol J ; 22(4): 892-903, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37975410

ABSTRACT

Wheat immunotoxicity is associated with abnormal reaction to gluten-derived peptides. Attempts to reduce immunotoxicity using breeding and biotechnology often affect dough quality. Here, the multiplexed CRISPR-Cas9 editing of cultivar Fielder was used to modify gluten-encoding genes, specifically focusing on ω- and γ-gliadin gene copies, which were identified to be abundant in immunoreactive peptides based on the analysis of wheat genomes assembled using the long-read sequencing technologies. The whole-genome sequencing of an edited line showed mutation or deletion of nearly all ω-gliadin and half of the γ-gliadin gene copies and confirmed the lack of editing in the α/ß-gliadin genes. The estimated 75% and 64% reduction in ω- and γ-gliadin content, respectively, had no negative impact on the end-use quality characteristics of grain protein and dough. A 47-fold immunoreactivity reduction compared to a non-edited line was demonstrated using antibodies against immunotoxic peptides. Our results indicate that the targeted CRISPR-based modification of the ω- and γ-gliadin gene copies determined to be abundant in immunoreactive peptides by analysing high-quality genome assemblies is an effective mean for reducing immunotoxicity of wheat cultivars while minimizing the impact of editing on protein quality.


Subject(s)
Gliadin , Grain Proteins , Gliadin/genetics , Grain Proteins/metabolism , Triticum/metabolism , Plant Breeding , Glutens/genetics , Multigene Family , Peptides/genetics
3.
Plant J ; 111(6): 1580-1594, 2022 09.
Article in English | MEDLINE | ID: mdl-35834607

ABSTRACT

The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.


Subject(s)
Hordeum , Chromosomes , Domestication , Hordeum/genetics , Linkage Disequilibrium/genetics
4.
Plant Biotechnol J ; 20(12): 2332-2341, 2022 12.
Article in English | MEDLINE | ID: mdl-36070109

ABSTRACT

The low efficiency of genetic transformation and gene editing across diverse cultivars hinder the broad application of CRISPR technology for crop improvement. The development of virus-based methods of CRISPR-Cas system delivery into the plant cells holds great promise to overcome these limitations. Here, we perform direct inoculation of wheat leaves with the barley stripe mosaic virus (BSMV) transcripts to deliver guide RNAs (sgRNA) into the Cas9-expressing wheat. We demonstrate that wheat inoculation with the pool of BSMV-sgRNAs could be used to generate heritable precise deletions in the promoter region of a transcription factor and to perform multiplexed editing of agronomic genes. We transfer the high-expressing locus of Cas9 into adapted spring and winter cultivars by marker-assisted introgression and use of the BSMV-sgRNAs to edit two agronomic genes. A strategy presented in our study could be applied to any adapted cultivar for creating new cis-regulatory diversity or large-scale editing of multiple genes in biological pathways or QTL regions, opening possibilities for the effective engineering of crop genomes, and accelerating gene discovery and trait improvement efforts.


Subject(s)
RNA Viruses , RNA, Small Untranslated , CRISPR-Cas Systems/genetics , Gene Editing , Promoter Regions, Genetic/genetics , RNA, Viral , Triticum/genetics , RNA, Small Untranslated/genetics
5.
Plant Biotechnol J ; 19(12): 2428-2441, 2021 12.
Article in English | MEDLINE | ID: mdl-34270168

ABSTRACT

The development of CRISPR-based editors recognizing distinct protospacer-adjacent motifs (PAMs), or having different spacer length/structure requirements broadens the range of possible genomic applications. We evaluated the natural and engineered variants of Cas12a (FnCas12a and LbCas12a) and Cas9 for their ability to induce mutations in endogenous genes controlling important agronomic traits in wheat. Unlike FnCas12a, LbCas12a-induced mutations in the wheat genome, even though with a lower rate than that reported for SpCas9. The eight-fold improvement in the gene editing efficiency was achieved for LbCas12a by using the guides flanked by ribozymes and driven by the RNA polymerase II promoter from switchgrass. The efficiency of multiplexed genome editing (MGE) using LbCas12a was mostly similar to that obtained using the simplex RNA guides and showed substantial increase after subjecting transgenic plants to high-temperature treatment. We successfully applied LbCas12a-MGE for generating heritable mutations in a gene controlling grain size and weight in wheat. We showed that the range of editable loci in the wheat genome could be further expanded by using the engineered variants of Cas12a (LbCas12a-RVR) and Cas9 (Cas9-NG and xCas9) that recognize the TATV and NG PAMs, respectively, with the Cas9-NG showing higher editing efficiency on the targets with atypical PAMs compared to xCas9. In conclusion, our study reports a set of validated natural and engineered variants of Cas12a and Cas9 editors for targeting loci in the wheat genome not amenable to modification using the original SpCas9 nuclease.


Subject(s)
CRISPR-Cas Systems , Triticum , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing , Genome, Plant/genetics , Triticum/genetics , Triticum/metabolism
6.
Plant J ; 100(2): 251-264, 2019 10.
Article in English | MEDLINE | ID: mdl-31219637

ABSTRACT

Grain size and weight are important components of a suite of yield-related traits in crops. Here, we showed that the CRISPR-Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1-recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double-copy mutant showing larger effect than the respective single copy mutants. The TaGW7-centered gene co-expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co-localization of TaGW7 with α- and ß-tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7-associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR-Cas9 system with cross-species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.


Subject(s)
Plant Proteins/metabolism , Triticum/growth & development , Triticum/genetics , Triticum/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Editing , Plant Proteins/genetics , Quantitative Trait Loci/genetics
7.
New Phytol ; 225(1): 326-339, 2020 01.
Article in English | MEDLINE | ID: mdl-31465541

ABSTRACT

Awns are stiff, hair-like structures which grow from the lemmas of wheat (Triticum aestivum) and other grasses that contribute to photosynthesis and play a role in seed dispersal. Variation in awn length in domesticated wheat is controlled primarily by three major genes, most commonly the dominant awn suppressor Tipped1 (B1). This study identifies a transcription repressor responsible for awn inhibition at the B1 locus. Association mapping was combined with analysis in biparental populations to delimit B1 to a distal region of 5AL colocalized with QTL for number of spikelets per spike, kernel weight, kernel length, and test weight. Fine-mapping located B1 to a region containing only two predicted genes, including C2H2 zinc finger transcriptional repressor TraesCS5A02G542800 upregulated in developing spikes of awnless individuals. Deletions encompassing this candidate gene were present in awned mutants of an awnless wheat. Sequence polymorphisms in the B1 coding region were not observed in diverse wheat germplasm whereas a nearby polymorphism was highly predictive of awn suppression. Transcriptional repression by B1 is the major determinant of awn suppression in global wheat germplasm. It is associated with increased number of spikelets per spike and decreased kernel size.


Subject(s)
Chromosome Mapping , Genetic Loci , Repressor Proteins/metabolism , Suppression, Genetic , Transcription, Genetic , Triticum/anatomy & histology , Triticum/genetics , Amino Acid Sequence , Base Sequence , Chromosome Segregation/genetics , Gene Deletion , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , Genetic Markers , Genome-Wide Association Study , Haplotypes/genetics , Inbreeding , Organ Size , Plant Proteins/chemistry , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Recombination, Genetic/genetics , Up-Regulation/genetics
8.
Plant J ; 95(6): 1039-1054, 2018 09.
Article in English | MEDLINE | ID: mdl-29952048

ABSTRACT

Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.


Subject(s)
Polyploidy , Recombination, Genetic/genetics , Triticum/genetics , Alleles , Chromosome Mapping/methods , Genetic Variation/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
9.
Plant J ; 92(2): 317-330, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28776783

ABSTRACT

During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross-species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next-generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross-genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter- and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.


Subject(s)
Genetic Speciation , Hybridization, Genetic/genetics , Triticum/genetics , Chromosomes, Plant/genetics , DNA Transposable Elements/genetics , Gene Rearrangement , Genome, Plant/genetics , Hordeum/genetics , In Situ Hybridization, Fluorescence , Karyotype , Phylogeny
10.
Theor Appl Genet ; 131(11): 2463-2475, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30136108

ABSTRACT

KEY MESSAGE: CRISPR-Cas9-based genome editing and EMS mutagenesis revealed inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. The TaGW2 gene homoeologues have been reported to be negative regulators of grain size (GS) and thousand grain weight (TGW) in wheat. However, the contribution of each homoeologue to trait variation among different wheat cultivars is not well documented. We used the CRISPR-Cas9 system and TILLING to mutagenize each homoeologous gene copy in cultivars Bobwhite and Paragon, respectively. Plants carrying single-copy nonsense mutations in different genomes showed different levels of GS/TGW increase, with TGW increasing by an average of 5.5% (edited lines) and 5.3% (TILLING mutants). In any combination, the double homoeologue mutants showed higher phenotypic effects than the respective single-genome mutants. The double mutants had on average 12.1% (edited) and 10.5% (TILLING) higher TGW with respect to wild-type lines. The highest increase in GS and TGW was shown for triple mutants of both cultivars, with increases in 16.3% (edited) and 20.7% (TILLING) in TGW. The additive effects of the TaGW2 homoeologues were also demonstrated by the negative correlation between the functional gene copy number and GS/TGW in Bobwhite mutants and an F2 population. The highest single-genome increases in GS and TGW in Paragon and Bobwhite were obtained by mutations in the B and D genomes, respectively. These inter-cultivar differences in the phenotypic effects between the TaGW2 gene homoeologues coincide with inter-cultivar differences in the homoeologue expression levels. These results indicate that GS/TGW variation in wheat can be modulated by the dosage of homoeologous genes with inter-cultivar differences in the magnitude of the individual homoeologue effects.


Subject(s)
Gene Editing , Mutagenesis , Seeds/growth & development , Triticum/genetics , CRISPR-Cas Systems , Edible Grain/genetics , Edible Grain/growth & development , Gene Knockout Techniques , Seeds/genetics , Triticum/growth & development
11.
BMC Genomics ; 18(1): 291, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28403814

ABSTRACT

BACKGROUND: Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). RESULTS: The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. CONCLUSIONS: Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.


Subject(s)
Basidiomycota/genetics , Gene Expression Profiling/methods , Plant Proteins/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Triticum/genetics , Base Sequence , Basidiomycota/classification , Basidiomycota/isolation & purification , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Fungal , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Stems/genetics , Plant Stems/microbiology , Triticum/microbiology
12.
Plant Cell ; 26(4): 1382-1397, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24728647

ABSTRACT

Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but systematic cataloguing of mutations would further increase their utility. We examined the suitability of multiplexed global exome capture and sequencing coupled with custom-developed bioinformatics tools to identify mutations in well-characterized mutant populations of rice (Oryza sativa) and wheat (Triticum aestivum). In rice, we identified ∼18,000 induced mutations from 72 independent M2 individuals. Functional evaluation indicated the recovery of potentially deleterious mutations for >2600 genes. We further observed that specific sequence and cytosine methylation patterns surrounding the targeted guanine residues strongly affect their probability to be alkylated by ethyl methanesulfonate. Application of these methods to six independent M2 lines of tetraploid wheat demonstrated that our bioinformatics pipeline is applicable to polyploids. In conclusion, we provide a method for developing large-scale induced mutation resources with relatively small investments that is applicable to resource-poor organisms. Furthermore, our results demonstrate that large libraries of sequenced mutations can be readily generated, providing enhanced opportunities to study gene function and assess the effect of sequence and chromatin context on mutations.

13.
Theor Appl Genet ; 130(7): 1393-1404, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28378053

ABSTRACT

KEY MESSAGE: Imputing genotypes from the 90K SNP chip to exome sequence in wheat was moderately accurate. We investigated the factors that affect imputation and propose several strategies to improve accuracy. Imputing genetic marker genotypes from low to high density has been proposed as a cost-effective strategy to increase the power of downstream analyses (e.g. genome-wide association studies and genomic prediction) for a given budget. However, imputation is often imperfect and its accuracy depends on several factors. Here, we investigate the effects of reference population selection algorithms, marker density and imputation algorithms (Beagle4 and FImpute) on the accuracy of imputation from low SNP density (9K array) to the Infinium 90K single-nucleotide polymorphism (SNP) array for a collection of 837 hexaploid wheat Watkins landrace accessions. Based on these results, we then used the best performing reference selection and imputation algorithms to investigate imputation from 90K to exome sequence for a collection of 246 globally diverse wheat accessions. Accession-to-nearest-entry and genomic relationship-based methods were the best performing selection algorithms, and FImpute resulted in higher accuracy and was more efficient than Beagle4. The accuracy of imputing exome capture SNPs was comparable to imputing from 9 to 90K at approximately 0.71. This relatively low imputation accuracy is in part due to inconsistency between 90K and exome sequence formats. We also found the accuracy of imputation could be substantially improved to 0.82 when choosing an equivalent number of exome SNP, instead of 90K SNPs on the existing array, as the lower density set. We present a number of recommendations to increase the accuracy of exome imputation.


Subject(s)
Exome , Genomics/methods , Polymorphism, Single Nucleotide , Triticum/genetics , Algorithms , Genetic Markers , Genotype , Polyploidy
14.
BMC Genomics ; 17: 21, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26729225

ABSTRACT

BACKGROUND: The species Xanthomonas translucens encompasses a complex of bacterial strains that cause diseases and yield loss on grass species including important cereal crops. Three pathovars, X. translucens pv. undulosa, X. translucens pv. translucens and X. translucens pv.cerealis, have been described as pathogens of wheat, barley, and oats. However, no complete genome sequence for a strain of this complex is currently available. RESULTS: A complete genome sequence of X. translucens pv. undulosa strain XT4699 was obtained by using PacBio long read, single molecule, real time (SMRT) DNA sequences and Illumina sequences. Draft genome sequences of nineteen additional X. translucens strains, which were collected from wheat or barley in different regions and at different times, were generated by Illumina sequencing. Phylogenetic relationships among different Xanthomonas strains indicates that X. translucens are members of a distinct clade from so-called group 2 xanthomonads and three pathovars of this species, undulosa, translucens and cerealis, represent distinct subclades in the group 1 clade. Knockout mutation of type III secretion system of XT4699 eliminated the ability to cause water-soaking symptoms on wheat and barley and resulted in a reduction in populations on wheat in comparison to the wild type strain. Sequence comparison of X. translucens strains revealed the genetic variation on type III effector repertories among different pathovars or within one pathovar. The full genome sequence of XT4699 reveals the presence of eight members of the Transcription-Activator Like (TAL) effector genes, which are phylogenetically distant from previous known TAL effector genes of group 2 xanthomonads. Microarray and qRT-PCR analyses revealed TAL effector-specific wheat gene expression modulation. CONCLUSIONS: PacBio long read sequencing facilitates the assembly of Xanthomonas genomes and the multiple TAL effector genes, which are difficult to assemble from short read platforms. The complete genome sequence of X. translucens pv. undulosa strain XT4699 and draft genome sequences of nineteen additional X. translucens strains provides a resource for further genetic analyses of pathogenic diversity and host range of the X. translucens species complex. TAL effectors of XT4699 strain play roles in modulating wheat host gene expressions.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Phylogeny , Transcriptional Activation/genetics , Xanthomonas/genetics , Bacterial Proteins/genetics , Genetic Variation , Genome, Bacterial , Hordeum/genetics , Hordeum/microbiology , Multigene Family/genetics , Triticum/genetics , Triticum/microbiology , Xanthomonas/pathogenicity
15.
Proc Natl Acad Sci U S A ; 110(20): 8057-62, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23630259

ABSTRACT

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.


Subject(s)
Ploidies , Triticum/genetics , Alleles , Crops, Agricultural/genetics , Gene Frequency , Genes, Plant , Genetic Variation , Genome, Plant , Genotype , Haplotypes , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide
16.
Plant Biotechnol J ; 12(6): 787-96, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24646323

ABSTRACT

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.


Subject(s)
Genetic Variation , Genome, Plant/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Polyploidy , Triticum/genetics , Alleles , Chromosome Mapping , Cluster Analysis , Gene Frequency/genetics , Genetic Loci , Genetic Markers , Genotype
17.
Plant Physiol ; 161(1): 252-65, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23124323

ABSTRACT

Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%-25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.


Subject(s)
Evolution, Molecular , Genome, Plant , Synteny , Triticum/genetics , Alternative Splicing , Brachypodium/genetics , Chromosomes, Plant/genetics , Codon, Nonsense/genetics , DNA, Plant/genetics , Databases, Genetic , Exons , Frameshift Mutation , Gene Expression Profiling , Gene Order , Introns , Mutation Rate , Open Reading Frames , Polyploidy , Pseudogenes , Selection, Genetic
18.
Nat Commun ; 13(1): 6287, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271077

ABSTRACT

Puccinia graminis f.sp. tritici (Pgt) causes stem rust disease in wheat that can result in severe yield losses. The factors driving the evolution of its virulence and adaptation remain poorly characterized. We utilize long-read sequencing to develop a haplotype-resolved genome assembly of a U.S. isolate of Pgt. Using Pgt haplotypes as a reference, we characterize the structural variants (SVs) and single nucleotide polymorphisms in a diverse panel of isolates. SVs impact the repertoire of predicted effectors, secreted proteins involved in host-pathogen interaction, and show evidence of purifying selection. By analyzing global and local genomic ancestry we demonstrate that the origin of 8 out of 12 Pgt clades is linked with either somatic hybridization or sexual recombination between the diverged donor populations. Our study shows that SVs and admixture events appear to play an important role in broadening Pgt virulence and the origin of highly virulent races, creating a resource for studying the evolution of Pgt virulence and preventing future epidemic outbreaks.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Plant Diseases/genetics , Metagenomics , Basidiomycota/genetics
19.
Nat Commun ; 13(1): 826, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149708

ABSTRACT

Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.


Subject(s)
Gene Expression Regulation, Plant , Gene Expression , Genomics , Phenotype , Polyploidy , Triticum/genetics , Alleles , Chromosome Mapping , Genome, Plant , Plant Breeding , Quantitative Trait Loci , Triticum/physiology
20.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-34751373

ABSTRACT

To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01× sequence coverage, which was slightly lower than the accuracy obtained using the 0.5× sequence coverage (96.6%). Compared to Beagle, on average, PHG imputation was ∼3.5% (P-value < 2 × 10-14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with independent 2× GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.


Subject(s)
Polymorphism, Single Nucleotide , Triticum , Animals , Exome , Genotype , Haplotypes/genetics , Information Storage and Retrieval , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL