Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Theor Appl Genet ; 137(6): 120, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709310

ABSTRACT

KEY MESSAGE: There is variation in stay-green within barley breeding germplasm, influenced by multiple haplotypes and environmental conditions. The positive genetic correlation between stay-green and yield across multiple environments highlights the potential as a future breeding target. Barley is considered one of the most naturally resilient crops making it an excellent candidate to dissect the genetics of drought adaptive component traits. Stay-green, is thought to contribute to drought adaptation, in which the photosynthetic machinery is maintained for a longer period post-anthesis increasing the photosynthetic duration of the plant. In other cereal crops, including wheat, stay-green has been linked to increased yield under water-limited conditions. Utilizing a panel of diverse barley breeding lines from a commercial breeding program we aimed to characterize stay-green in four environments across two years. Spatiotemporal modeling was used to accurately model senescence patterns from flowering to maturity characterizing the variation for stay-green in barley for the first time. Environmental effects were identified, and multi-environment trait analysis was performed for stay-green characteristics during grain filling. A consistently positive genetic correlation was found between yield and stay-green. Twenty-two chromosomal regions with large effect haplotypes were identified across and within environment types, with ten being identified in multiple environments. In silico stacking of multiple desirable haplotypes showed an opportunity to improve the stay-green phenotype through targeted breeding. This study is the first of its kind to model barley stay-green in a large breeding panel and has detected novel, stable and environment specific haplotypes. This provides a platform for breeders to develop Australian barley with custom senescence profiles for improved drought adaptation.


Subject(s)
Droughts , Haplotypes , Hordeum , Phenotype , Plant Breeding , Hordeum/genetics , Hordeum/growth & development , Environment , Photosynthesis/genetics , Quantitative Trait Loci , Chromosome Mapping
2.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35113190

ABSTRACT

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Subject(s)
Basidiomycota , Triticum , Disease Resistance/genetics , Genome-Wide Association Study , Plant Diseases/genetics , Triticum/genetics
3.
Theor Appl Genet ; 134(6): 1645-1662, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33900415

ABSTRACT

In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.


Subject(s)
Climate Change , Plant Breeding , Plant Roots/physiology , Triticum/genetics , Crops, Agricultural/genetics , Genes, Plant , Phenotype , Plant Roots/genetics , Triticum/physiology
4.
Int J Mol Sci ; 21(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722187

ABSTRACT

Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha-1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha-1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.


Subject(s)
Chromosomes, Plant , Quantitative Trait Loci , Triticum , Chromosome Mapping , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Crosses, Genetic , Dehydration/genetics , Dehydration/metabolism , Genome-Wide Association Study , Triticum/genetics , Triticum/growth & development
5.
Plant Methods ; 18(1): 2, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012581

ABSTRACT

BACKGROUND: The incorporation of root traits into elite germplasm is typically a slow process. Thus, innovative approaches are required to accelerate research and pre-breeding programs targeting root traits to improve yield stability in different environments and soil types. Marker-assisted selection (MAS) can help to speed up the process by selecting key genes or quantitative trait loci (QTL) associated with root traits. However, this approach is limited due to the complex genetic control of root traits and the limited number of well-characterised large effect QTL. Coupling MAS with phenotyping could increase the reliability of selection. Here we present a useful framework to rapidly modify root traits in elite germplasm. In this wheat exemplar, a single plant selection (SPS) approach combined three main elements: phenotypic selection (in this case for seminal root angle); MAS using KASP markers (targeting a root biomass QTL); and speed breeding to accelerate each cycle. RESULTS: To develop a SPS approach that integrates non-destructive screening for seminal root angle and root biomass, two initial experiments were conducted. Firstly, we demonstrated that transplanting wheat seedlings from clear pots (for seminal root angle assessment) into sand pots (for root biomass assessment) did not impact the ability to differentiate genotypes with high and low root biomass. Secondly, we demonstrated that visual scores for root biomass were correlated with root dry weight (r = 0.72), indicating that single plants could be evaluated for root biomass in a non-destructive manner. To highlight the potential of the approach, we applied SPS in a backcrossing program which integrated MAS and speed breeding for the purpose of rapidly modifying the root system of elite bread wheat line Borlaug100. Bi-directional selection for root angle in segregating generations successfully shifted the mean root angle by 30° in the subsequent generation (P ≤ 0.05). Within 18 months, BC2F4:F5 introgression lines were developed that displayed a full range of root configurations, while retaining similar above-ground traits to the recurrent parent. Notably, the seminal root angle displayed by introgression lines varied more than 30° compared to the recurrent parent, resulting in lines with both narrow and wide root angles, and high and low root biomass phenotypes. CONCLUSION: The SPS approach enables researchers and plant breeders to rapidly manipulate root traits of future crop varieties, which could help improve productivity in the face of increasing environmental fluctuations. The newly developed elite wheat lines with modified root traits provide valuable materials to study the value of different root systems to support yield in different environments and soil types.

6.
Mol Plant ; 15(8): 1300-1309, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35754174

ABSTRACT

There are many challenges facing the development of high-yielding, nutritious crops for future environments. One limiting factor is generation time, which prolongs research and plant breeding timelines. Recent advances in speed breeding protocols have dramatically reduced generation time for many short-day and long-day species by optimizing light and temperature conditions during plant growth. However, winter crops with a vernalization requirement still require up to 6-10 weeks in low-temperature conditions before the transition to reproductive development. Here, we tested a suite of environmental conditions and protocols to investigate whether the vernalization process can be accelerated. We identified a vernalization method consisting of exposing seeds at the soil surface to an extended photoperiod of 22 h day:2 h night at 10°C with transfer to speed breeding conditions that dramatically reduces generation time in both winter wheat (Triticum aestivum) and winter barley (Hordeum vulgare). Implementation of the speed vernalization protocol followed by speed breeding allowed the completion of up to five generations per year for winter wheat or barley, whereas only two generations can be typically completed under standard vernalization and plant growth conditions. The speed vernalization protocol developed in this study has great potential to accelerate biological research and breeding outcomes for winter crops.


Subject(s)
Edible Grain , Hordeum , Crops, Agricultural/genetics , Flowers , Gene Expression Regulation, Plant , Photoperiod , Plant Breeding , Triticum/genetics
7.
Front Plant Sci ; 12: 754439, 2021.
Article in English | MEDLINE | ID: mdl-35046971

ABSTRACT

Due to the climate change and an increased frequency of drought, it is of enormous importance to identify and to develop traits that result in adaptation and in improvement of crop yield stability in drought-prone regions with low rainfall. Early vigour, defined as the rapid development of leaf area in early developmental stages, is reported to contribute to stronger plant vitality, which, in turn, can enhance resilience to erratic drought periods. Furthermore, early vigour improves weed competitiveness and nutrient uptake. Here, two sets of a multi-reference nested association mapping (MR-NAM) population of bread wheat (Triticum aestivum ssp. aestivum L.) were used to investigate early vigour in a rain-fed field environment for 3 years, and additionally assessed under controlled conditions in a greenhouse experiment. The normalised difference vegetation index (NDVI) calculated from red/infrared light reflectance was used to quantify early vigour in the field, revealing a correlation (p < 0.05; r = 0.39) between the spectral measurement and the length of the second leaf. Under controlled environmental conditions, the measured projected leaf area, using a green-pixel counter, was also correlated to the leaf area of the second leaf (p < 0.05; r = 0.38), as well as to the recorded biomass (p < 0.01; r = 0.71). Subsequently, genetic determination of early vigour was tested by conducting a genome-wide association study (GWAS) for the proxy traits, revealing 42 markers associated with vegetation index and two markers associated with projected leaf area. There are several quantitative trait loci that are collocated with loci for plant developmental traits including plant height on chromosome 2D (log10 (P) = 3.19; PVE = 0.035), coleoptile length on chromosome 1B (-log10 (P) = 3.24; PVE = 0.112), as well as stay-green and vernalisation on chromosome 5A (-log10 (P) = 3.14; PVE = 0.115).

8.
Front Plant Sci ; 10: 436, 2019.
Article in English | MEDLINE | ID: mdl-31024600

ABSTRACT

The optimal root system architecture (RSA) of a crop is context dependent and critical for efficient resource capture in the soil. Narrow root growth angle promoting deeper root growth is often associated with improved access to water and nutrients in deep soils during terminal drought. RSA, therefore is a drought-adaptive trait that could minimize yield losses in regions with limited rainfall. Here, GWAS for seminal root angle (SRA) identified seven marker-trait associations clustered on chromosome 6A, representing a major quantitative trait locus (qSRA-6A) which also displayed high levels of pairwise LD (r 2 = 0.67). Subsequent haplotype analysis revealed significant differences between major groups. Candidate gene analysis revealed loci related to gravitropism, polar growth and hormonal signaling. No differences were observed for root biomass between lines carrying hap1 and hap2 for qSRA-6A, highlighting the opportunity to perform marker-assisted selection for the qSRA-6A locus and directly select for wide or narrow RSA, without influencing root biomass. Our study revealed that the genetic predisposition for deep rooting was best expressed under water-limitation, yet the root system displayed plasticity producing root growth in response to water availability in upper soil layers. We discuss the potential to deploy root architectural traits in cultivars to enhance yield stability in environments that experience limited rainfall.

9.
Plant Methods ; 14: 36, 2018.
Article in English | MEDLINE | ID: mdl-29785201

ABSTRACT

BACKGROUND: Plant breeding requires numerous generations to be cycled and evaluated before an improved cultivar is released. This lengthy process is required to introduce and test multiple traits of interest. However, a technology for rapid generation advance named 'speed breeding' was successfully deployed in bread wheat (Triticum aestivum L.) to achieve six generations per year while imposing phenotypic selection for foliar disease resistance and grain dormancy. Here, for the first time the deployment of this methodology is presented in durum wheat (Triticum durum Desf.) by integrating selection for key traits, including above and below ground traits on the same set of plants. This involved phenotyping for seminal root angle (RA), seminal root number (RN), tolerance to crown rot (CR), resistance to leaf rust (LR) and plant height (PH). In durum wheat, these traits are desirable in environments where yield is limited by in-season rainfall with the occurrence of CR and epidemics of LR. To evaluate this multi-trait screening approach, we applied selection to a large segregating F2 population (n = 1000) derived from a bi-parental cross (Outrob4/Caparoi). A weighted selection index (SI) was developed and applied. The gain for each trait was determined by evaluating F3 progeny derived from 100 'selected' and 100 'unselected' F2 individuals. RESULTS: Transgressive segregation was observed for all assayed traits in the Outrob4/Caparoi F2 population. Application of the SI successfully shifted the population mean for four traits, as determined by a significant mean difference between 'selected' and 'unselected' F3 families for CR tolerance, LR resistance, RA and RN. No significant shift for PH was observed. CONCLUSIONS: The novel multi-trait phenotyping method presents a useful tool for rapid selection of early filial generations or for the characterization of fixed lines out-of-season. Further, it offers efficient use of resources by assaying multiple traits on the same set of plants. Results suggest that when performed in parallel with speed breeding in early generations, selection will enrich recombinant inbred lines with desirable alleles and will reduce the length and number of years required to combine these traits in elite breeding populations and therefore cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL