Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Chem ; 95(19): 7458-7467, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37146167

ABSTRACT

Herein, we report a novel liquid chromatography coupled with tandem mass spectrometry method to characterize N-acetylneuraminic acid (Neu5Ac, Sa) linkage in N-linked glycans in glycopeptides with no sialic acid derivatization. First, we established a separation in reversed-phase high-performance liquid chromatography (HPLC) using a higher formic acid concentration in the mobile phases, which separated the N-glycopeptides depending on the Sa linkage. We also demonstrated a novel characterization method of Sa linkages in N-glycopeptides using electron-activated dissociation. We found that hot electron capture dissociation using an electron beam energy higher than 5 eV cleaved glycosidic bonds in glycopeptides, resulting in each glycosidic bond in the antennas being broken on both sides of the oxygen atom. Such glycosidic bond cleavage at the reducing end (C-type ion) showed the difference in Sa linkages between Sa-Gal, Gal-GlcNAc, and GlcNAc-Man. We proposed a rule to characterize the Sa linkages using the Sa-Gal products. This method was applied to N-glycopeptides in tryptic fetuin digest separated by an optimized reversed-phase HPLC. We successfully identified a number of isomeric glycoforms in the glycopeptides with different Sa links, whose peptide backbones were also simultaneously sequenced by hot ECD.


Subject(s)
Glycopeptides , N-Acetylneuraminic Acid , Humans , N-Acetylneuraminic Acid/chemistry , Glycopeptides/analysis , Electrons , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
2.
Nat Biotechnol ; 23(9): 1159-69, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16127450

ABSTRACT

The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.


Subject(s)
Antibodies, Monoclonal/chemistry , Animals , Blotting, Southern , Blotting, Western , CHO Cells , Calorimetry, Differential Scanning , Carbohydrates/chemistry , Chickens , Cricetinae , DNA/metabolism , Egg White , Embryo, Mammalian/cytology , Embryo, Nonmammalian , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors , Genome , Glycosylation , Humans , Immunoglobulin G , Immunohistochemistry , Isoelectric Focusing , Mice , Mice, Inbred BALB C , Models, Genetic , Monosaccharides/chemistry , Oligosaccharides/chemistry , Ovalbumin/genetics , Ovalbumin/metabolism , Polymerase Chain Reaction , Recombinant Fusion Proteins/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Electrospray Ionization , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL