Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Cell Biochem ; 125(3): e30530, 2024 03.
Article in English | MEDLINE | ID: mdl-38349116

ABSTRACT

When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Coronavirus Nucleocapsid Proteins , Endothelial Cells , Phase Separation , Nucleocapsid Proteins
2.
Microbiology (Reading) ; 169(2)2023 02.
Article in English | MEDLINE | ID: mdl-36821361

ABSTRACT

Colonization of mucosal tissues by Neisseria meningitidis requires adhesion mediated by the type IV pilus and multiple outer-membrane proteins. Penetration of the mucosa and invasion of epithelial cells are thought to contribute to host persistence and invasive disease. Using Calu-3 cell monolayers grown at an air-liquid interface, we examined adhesion, invasion and monolayer disruption by carriage isolates of two clonal complexes of N. meningitidis. Carriage isolates of both the serogroup Y cc23 and the hypervirulent serogroup W cc11 lineages exhibited high levels of cellular adhesion, and a variable disruption phenotype across independent isolates. Inactivation of the gene encoding the main pilus sub-unit in multiple cc11 isolates abrogated both adhesive capacity and ability to disrupt epithelial monolayers. Contrastingly, inactivation of the phase-variable opa or nadA genes reduced adhesion and invasion, but not disruption of monolayer integrity. Adherence of tissue-disruptive meningococci correlated with loss of staining for the tight junction protein, occludin. Intriguingly, in a pilus-negative strain background, we observed compensatory ON switching of opa genes, which facilitated continued adhesion. We conclude that disruption of epithelial monolayers occurs in multiple meningococcal lineages but can vary during carriage and is intimately linked to pilus-mediated adhesion.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Humans , Neisseria meningitidis/genetics , Serogroup , Fimbriae, Bacterial
3.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067495

ABSTRACT

Increasing antimicrobial resistance to the action of existing antibiotics has prompted researchers to identify new natural molecules with antimicrobial potential. In this study, a green system was developed for biosynthesizing gold nanoparticles (BAuNPs) using sage (Salvia officinalis L.) leaf extract bioconjugated with non-toxic, eco-friendly, and biodegradable chitosan, forming chitosan/gold bioconjugates (Chi/BAuNPs). Characterization of the BAuNPs and Chi/BAuNPs conjugates takes place using transmission electron microscopy (TEM), X-ray spectra, Fourier transform infrared (FT-IR) spectroscopy, and zeta potential (Z-potential). The chemical composition of S. officinalis extract was evaluated via gas chromatography/mass spectrometry (GC/MS). This study evaluated the antioxidant and antimicrobial activities of human pathogenic multidrug-resistant (MDR) and multisensitive (MS) bacterial isolates using the agar diffusion method. Chi/BAuNPs showed inhibition of the MDR strains more effectively than BAuNPs alone as compared with a positive standard antibiotic. The cytotoxicity assay revealed that the human breast adenocarcinoma cancer cells (MCF7) were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites compared to non-malignant human fibroblast cells (HFs). The study shows that BAuNPs and Chi/BAuNPs, combined with 5-FU NPs, can effectively treat cancer at concentrations where the free chemical drug (5-Fu) is ineffective, with a noted reduction in the required dosage for noticeable antitumor action.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Chitosan , Metal Nanoparticles , Salvia officinalis , Humans , Gold/chemistry , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Fluorouracil , Plant Extracts/pharmacology , Plant Extracts/chemistry , Green Chemistry Technology/methods
4.
Microb Pathog ; 173(Pt A): 105838, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36336132

ABSTRACT

Urinary tract infection is among the greatest prevalent infections, and it is also one of the most challenging diseases to treat because there are germs that are resistant to several drugs. Antibiotics are typically provided as the treatment; however, there is a disparity in the type of antibiotic that was being prescribed, the amount of the dosage, and the length of time that patients were required to take antibiotics, which led to the creation of multidrug-resistant infections. The objective of this research is to prescribe Fosfomycin treatment for the infection brought by the Escherichia coli bacterium and to determine whether or not it is effective. Throughout the course of this research, the antimicrobial drugs fosfomycin were factored in the equation at various points. The patients who had exhibited symptoms of urinary tract infection provided their urine for the purpose of giving a sample for the studies, which were carried out on them. The results of these studies showed that there were Fosfomycin antimicrobials that were successful in disrupting the E. coli bacteria, and the least inhibitory concentration (MIC) required for the pathogen to be vulnerable was quite low. In addition, administration of fosfomycin intravenously considerably lowers both the bacterial load and the inflammatory infiltration in the kidney and bladder, which helps to preserve the structural integrity of the kidney.


Subject(s)
Escherichia coli Infections , Fosfomycin , Urinary Tract Infections , Humans , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , Escherichia coli , beta-Lactamases , Microbial Sensitivity Tests , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Necrosis/drug therapy , Apoptosis
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638812

ABSTRACT

Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients. The results showed the presence of antivirals and antibiotics such as Foscarnet, Indinavir, and lymecycline in EVs from patients treated with these drugs. Moreover, increased levels of anti-inflammatory metabolites such as LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 were detected in EVs from COVID-19 patients when compared with controls. Further, we found decreased levels of metabolites associated with coagulation, such as thromboxane and elaidic acid, in EVs from COVID-19 patients. These findings suggest that EVs not only carry active drug molecules but also anti-inflammatory metabolites, clearly suggesting that exosomes might play a crucial role in negotiating with heightened inflammation during COVID-19 infection. These preliminary results could also pave the way for the identification of novel metabolites that might act as critical regulators of inflammatory pathways during viral infections.


Subject(s)
COVID-19/metabolism , Extracellular Vesicles/metabolism , Metabolome , SARS-CoV-2/physiology , Adult , Anti-Inflammatory Agents/metabolism , COVID-19/pathology , Extracellular Vesicles/pathology , Female , Humans , Male , Metabolomics , Middle Aged
6.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38794151

ABSTRACT

Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the binding pattern of phytochemicals from Nyctanthes arbor-tristis Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus. Results: Virtual screening and AutoDock analysis revealed that arborside-C, beta amyrin, and beta-sitosterol exhibited a substantial binding affinity for specific viral targets. The arborside-C and beta-sitosterol molecules were shown to have binding energies of -8.65 and -9.11 kcal/mol, respectively, when interacting with the major protease. Simultaneously, the medication remdesivir exhibited a control value of -6.18 kcal/mol. The measured affinity of phytochemicals for the other investigated targets was -7.52 for beta-amyrin against Ebola and -6.33 kcal/mol for nicotiflorin against Nipah virus targets. Additional molecular dynamics simulation (MDS) conducted on the molecules with significant antiviral potential, specifically the beta-amyrin-VP35 complex showing a stable RMSD pattern, yielded encouraging outcomes. Conclusions: Arborside-C, beta-sitosterol, beta-amyrin, and nicotiflorin could be established as excellent natural antiviral compounds derived from Nyctanthes arbor-tristis Linn. The virus-suppressing phytochemicals in this plant make it a compelling target for both in vitro and in vivo research in the future.

7.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38931347

ABSTRACT

The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.

8.
Cells ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334665

ABSTRACT

HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.


Subject(s)
Histone Chaperones , Histones , Animals , Humans , HeLa Cells , Histone Chaperones/genetics , Histones/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae/metabolism , Serine , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
9.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649007

ABSTRACT

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Subject(s)
Benzoquinones , CCAAT-Enhancer-Binding Proteins , DNA Repair , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitination/drug effects , Benzoquinones/pharmacology , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , DNA Damage/drug effects
10.
Int J Biol Macromol ; 260(Pt 2): 129523, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232879

ABSTRACT

Since the emergence of SARS-CoV in 2003, researchers worldwide have been toiling away at deciphering this virus's biological intricacies. In line with other known coronaviruses, the nucleocapsid (N) protein is an important structural component of SARS-CoV. As a result, much emphasis has been placed on characterizing this protein. Independent research conducted by a variety of laboratories has clearly demonstrated the primary function of this protein, which is to encapsidate the viral genome. Furthermore, various accounts indicate that this particular protein disrupts diverse intracellular pathways. Such observations imply its vital role in regulating the virus as well. The opening segment of this review will expound upon these distinct characteristics succinctly exhibited by the N protein. Additionally, it has been suggested that the N protein possesses diagnostic and vaccine capabilities when dealing with SARS-CoV. In light of this fact, we will be reviewing some recent headway in the use cases for N protein toward clinical purposes within this article's concluding segments. This forward movement pertains to both developments of COVID-19-oriented therapeutic targets as well as diagnostic measures. The strides made by medical researchers offer encouragement, knowing they are heading toward a brighter future combating global pandemic situations such as these.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2
11.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480259

ABSTRACT

Morganella morganii is a Gram-negative bacterial pathogen that causes bacteremia, urinary tract infections, intra-abdominal infections, chorioamnionitis, neonatal sepsis, and newborn meningitis. To control this bacterial pathogen a total of 3565 putative proteins targets in Morganella morganii were screened using comparative subtractive analysis of biochemical pathways annotated by the KEGG that did not share any similarities with human proteins. One of the targets, D-alanyl-D-alanine carboxypeptidase DacB [Morganella] was observed to be implicated in the majority of cell wall synthesis pathways, leading to its selection as a novel pharmacological target. The drug that interacted optimally with the identified target was observed to be Cefoperazone (DB01329) with the estimated free energy of binding -8.9 Kcal/mol. During molecular dynamics simulations; it was observed that DB01328-2exb and DB01329-2exb complexes showed similar values as the control FMX-2exb complex near 0.2 nm with better stability. Furthermore, MMPBSA total free energy calculation showed better binding energy than the control complex for DB01329-2exb interaction i.e. -31.50 (±0.93) kcal/mol. Our presented research suggested that D-alanyl-D-alanine carboxypeptidase DacB could be a therapeutic target and cefoperazone could be a promising ligand to inhibit the D-alanyl-D-alanine carboxypeptidase DacB protein of Morganella morganii. To identify prospective therapeutic and vaccine targets in Morganella morganii, this is the first computational and subtractive genomics investigation of various metabolic pathways exploring other therapeutic targets of Morganella morganii. In vitro/in vivo experimental validation of the identified target D-alanyl-D-alanine carboxypeptidase and the design of its inhibitors is suggested to figure out the best dose, the drug's effectiveness, and its toxicity.Communicated by Ramaswamy H. Sarma.

12.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38256852

ABSTRACT

The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1ß, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of -9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: -10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of -8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of -277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.

13.
J Biomol Struct Dyn ; 41(10): 4744-4755, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35510619

ABSTRACT

The coronavirus disease (COVID-19) pandemic has rapidly extended globally and killed approximately 5.83 million people all over the world. But, to date, no effective therapeutic against the disease has been developed. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enters the host cell through the spike glycoprotein (S protein) of the virus. Subsequently, RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of the virus mediate viral transcription and replication. Mechanistically inhibition of these proteins can hinder the transcription as well as replication of the virus. Recently oxysterols and its derivative, such as 25 (S)-hydroxycholesterol (25-HC) has shown antiviral activity against SARS-CoV-2. But the exact mechanisms and their impact on RdRp and Mpro have not been explored yet. Therefore, the study aimed to identify the inhibitory activity of 25-HC against the viral enzymes RdRp and Mpro simultaneously. Initially, a molecular docking simulation was carried out to evaluate the binding activity of the compound against the two proteins. The pharmacokinetics (PK) and toxicity parameters were analyzed to observe the 'drug-likeness' properties of the compound. Additionally, molecular dynamics (MD) simulation was performed to confirm the binding stability of the compound to the targeted protein. Furthermore, molecular mechanics generalized Born surface area (MM-GBSA) was used to predict the binding free energies of the compound to the targeted protein. Molecular docking simulation identified low glide energy -51.0 kcal/mol and -35.0 kcal/mol score against the RdRp and Mpro, respectively, where MD simulation found good binding stability of the compound to the targeted proteins. In addition, the MM/GBSA approach identified a good value of binding free energies (ΔG bind) of the compound to the targeted proteins. Therefore, the study concludes that the compound 25-HC could be developed as a treatment and/or prevention option for SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydroxycholesterols/pharmacology , Molecular Docking Simulation , Enzyme Inhibitors , Antiviral Agents/pharmacology , Molecular Dynamics Simulation , Protease Inhibitors
14.
PeerJ ; 11: e14809, 2023.
Article in English | MEDLINE | ID: mdl-36743956

ABSTRACT

There is a continuously increasing pressure associated with the appearance of Salmonella enterica Serovar typhimurium (S. typhimurium) and Shigella sonnei (S. sonnei) that have developed pathogenic multiple antibiotic resistance and the cost of cure and control of these enterobacteriaceae infections increases annually. The current report for first time demonstrated the distinguished antimicrobial action of camel lactoferrin (cLf) obtained from the milk of different clans of camel in Saudi Arabia against S. typhimurium and S. sonnei. These cLf subtypes showed comparable antimicrobial potential when tested against the two bacterial strains but were superior to either bovine (bLf) or human lactoferrin (hLf). The synergism between lactoferrins and antibiotics concerning their antibacterial efficacies against the two bacterial strains was evident. Exploring mechanisms by which camel lactoferrin can kill S. typhimurium and S. sonnei revealed that cLf affects bacterial protein profile. Besides, it interacts with bacterial lipopolysaccharides (LPS) and numerous membrane proteins of S. typhimurium and S. sonnei, with each bacterial strain possessing distinctive binding membrane proteins for lactoferrin. Furthermore, as evidenced by electron microscopy analysis, cLf induces extracellular and intracellular morphological changes in the test bacterial strains when used alone or in combination treatment with antibiotics. Lactoferrin and antibiotics combination strongly disrupts the integrity of the bacterial cells and their membranes. Therefore, cLf can kill S. typhimurium and S. sonnei by four different mechanisms, such as iron chelation, affecting some bacterial proteins, binding to bacterial LPS and membrane proteins, and impairing the integrity of the bacterial cells and their membranes.


Subject(s)
Anti-Infective Agents , Salmonella typhimurium , Animals , Cattle , Humans , Salmonella typhimurium/metabolism , Lactoferrin/pharmacology , Shigella sonnei/metabolism , Camelus/metabolism , Lipopolysaccharides/pharmacology , Serogroup , Anti-Bacterial Agents/pharmacology , Membrane Proteins/metabolism
15.
Microorganisms ; 11(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985326

ABSTRACT

The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce associated with human infections may be due to the use of wastewater or any contaminated water for the cultivation of fruits and vegetables, the firm attachment of the foodborne pathogens on the plant surface, and the internalization of these agents deep inside the tissue of the plant, poor disinfection practices and human consumption of raw fresh produce. Several investigations have been established related to the human microbial pathogens (HMPs) interaction, their internalization, and survival on/within plant tissue. Previous studies have displayed that HMPs are comprised of several cellular constituents to attach and adapt to the plant's intracellular niches. In addition, there are several plant-associated factors, such as surface morphology, nutrient content, and plant-HMP interactions, that determine the internalization and subsequent transmission to humans. Based on documented findings, the internalized HMPs are not susceptible to sanitation or decontaminants applied on the surface of the fresh produce. Therefore, the contamination of fresh produce by HMPs could pose significant food safety hazards. This review provides a comprehensive overview of the interaction between fresh produce and HMPs and reveals the ambiguity of interaction and transmission of the agents to humans.

16.
J Exp Clin Cancer Res ; 42(1): 301, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37957685

ABSTRACT

BACKGROUND: Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS: Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS: Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS: Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.


Subject(s)
DNA Repair , Retroelements , Humans , DNA Mismatch Repair , Recombinant Proteins/genetics , DNA Methylation , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism
17.
Diagnostics (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900005

ABSTRACT

A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.

18.
Vaccines (Basel) ; 11(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37242996

ABSTRACT

BACKGROUND: During a pandemic, healthcare workers are at high risk of contracting COVID-19. To protect these important individuals, it is highly recommended that they receive the COVID-19 vaccine. Our study focused on evaluating the safety and efficacy of Egypt's first approved vaccine, the Sinopharm vaccine (BBIBP-CorV), and comparing these findings with other vaccines. METHODS: An observational study was conducted in fifteen triage and isolation hospitals, from the 1st of March until the end of September 2021. The study included fully vaccinated and unvaccinated participants, and we measured vaccine effectiveness (using 1-aHR), the incidence rate of severely to critically ill hospitalized cases, COVID-19-related work absenteeism, and the safety of the vaccine as outcomes. RESULTS: Of the 1364 healthcare workers who were interviewed, 1228 agreed to participate. After taking the hazard ratio into account, the vaccine effectiveness was found to be 67% (95% CI, 80-43%) for symptomatic PCR-confirmed cases. The incidence rate ratio for hospitalization was 0.45 (95% CI, 0.15-1.31) in the vaccinated group compared to the unvaccinated group, and there was a significant reduction in absenteeism among the vaccinated group (p < 0.007). Most adverse events were mild and well tolerated. Vaccinated pregnant and lactating mothers did not experience any sentinel adverse events. CONCLUSION: Our study found that the BBIBP-CorV vaccine was effective in protecting healthcare workers from COVID-19.

19.
Foods ; 12(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37174295

ABSTRACT

Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.

20.
Toxins (Basel) ; 14(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36287958

ABSTRACT

Aflatoxins are the secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus and have severe pathological effects on the health of human and animals. The present study was designed to investigate the toxicopathological changes induced by aflatoxins and mitigative potential of Lactobacillus plantarum in broiler birds. One hundred and eighty broiler chicks at one day of age was procured from the local market, and chicks were equally divided into six groups with thirty birds in each group. These birds were treated with aflatoxins (300 and 600 µg/kg) and Lactobacillus plantarum (1 × 108 cfu/kg of feed) in different combinations. The first group was kept as the control, and only a basal diet was provided to birds (BD). In the second group (AF1), the first level of aflatoxins (300 µg/kg) was fed to the birds. In the third group (AF2), the second level of aflatoxins (600 µg/kg) was fed to birds. In the fourth group (AF1LP), Lactobacillus plantarum was given with first level of aflatoxins. In the fifth group (AF2LP), Lactobacillus plantarum was given with the second level of aflatoxins, and in the 6th group (BDLP), Lactobacillus plantarum alone was fed to the chicks. This experimental study was continued for 42 days. Birds were slaughtered after 42 days, and different parameters were assessed. Parameters studied were gain in body weight, organ weight along with some histopathological, hematological, biochemical parameters and residues of aflatoxins in liver and kidney. Lactobacillus plantarum improved the body weight gain and restored the relative organ weight. Hepatic and renal biomarkers returned to normal concentrations, serum proteins were restored in combination group AF1LP, and partial amelioration was observed in the AF2LP group. Red blood cells, white blood cells, hemoglobin centration and packed cell volume became normalized in the AF1LP group, while partial amelioration was observed in the AF2LP group. LP also reduced the concentration of aflatoxin residues in liver kidney and improved the TAC concentrations. The results of this study elucidated the mitigative potential of Lactobacillus plantarum against serum biochemical, histopathological, hematological and toxicopathological changes induced by aflatoxins in the chicks.


Subject(s)
Aflatoxins , Lactobacillus plantarum , Humans , Animals , Chickens , Aflatoxins/toxicity , Aflatoxins/metabolism , Lactobacillus plantarum/metabolism , Animal Feed/analysis , Furylfuramide/metabolism , Furylfuramide/pharmacology , Liver , Diet/veterinary , Kidney/metabolism , Oxidative Stress , Biomarkers/metabolism , Hemoglobins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL