ABSTRACT
Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.
Subject(s)
Crops, Agricultural/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Tylenchoidea/pathogenicity , Animals , Arachis/genetics , Arachis/parasitology , Coffee/genetics , Coffee/parasitology , Crops, Agricultural/parasitology , Gene Expression Regulation, Plant/genetics , Genomics , Genotype , Host-Pathogen Interactions/genetics , Oryza/genetics , Oryza/parasitology , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Immunity/genetics , Glycine max/genetics , Glycine max/parasitology , Tylenchoidea/geneticsABSTRACT
BACKGROUND: Ethylene is a phytohormone known for inducing a triple response in seedlings, leaf abscission and other responses to various stresses. Several studies in model plants have evaluated the importance of this hormone in crosstalk signaling with different metabolic pathways, in addition to responses to biotic stresses. However, the mechanism of action in plants of agricultural interest, such as soybean, and its participation in abiotic stresses remain unclear. RESULTS: The studies presented in this work allowed for the identification of 176 soybean genes described elsewhere for ethylene biosynthesis (108 genes) and signal transduction (68 genes). A model to predict these routes in soybean was proposed, and it had great representability compared to those described for Arabidopsis thaliana and Oryza sativa. Furthermore, analysis of putative gene promoters from soybean gene orthologs permitted the identification of 29 families of cis-acting elements. These elements are essential for ethylene-mediated regulation and its possible crosstalk with other signaling pathways mediated by other plant hormones. From genes that are differentially expressed in the transcriptome database, we analyzed the relative expression of some selected genes in resistant and tolerant soybean plants subjected to water deficit. The differential expression of a set of five soybean ethylene-related genes (MAT, ACS, ACO, ETR and CTR) was validated with RT-qPCR experiments, which confirmed variations in the expression of these soybean target genes, as identified in the transcriptome database. In particular, two families of ethylene biosynthesis genes (ACS and ACO) were upregulated under these experimental conditions, whereas CTR (involved in ethylene signal transduction) was downregulated. In the same samples, high levels of ethylene production were detected and were directly correlated with the free fraction levels of ethylene's precursor. Thus, the combination of these data indicated the involvement of ethylene biosynthesis and signaling in soybean responses to water stress. CONCLUSIONS: The in silico analysis, combined with the quantification of ethylene production (and its precursor) and RT-qPCR experiments, allowed for a better understanding of the importance of ethylene at a molecular level in this crop as well as its role in the response to abiotic stresses. In summary, all of the data presented here suggested that soybean responses to water stress could be regulated by a crosstalk network among different signaling pathways, which might involve various phytohormones, such as auxins, ABA and jasmonic acid. The integration of in silico and physiological data could also contribute to the application of biotechnological strategies to the development of improved cultivars with regard to different stresses, such as the isolation of stress-specific plant promoters.
Subject(s)
Droughts , Ethylenes/metabolism , Gene Expression Regulation, Plant , Glycine max/physiology , Plant Growth Regulators/metabolism , Computer Simulation , Metabolic Networks and Pathways , Models, Genetic , Signal Transduction , Glycine max/genetics , Stress, Physiological , TranscriptomeABSTRACT
BACKGROUND: Root-knot nematodes (RKN- Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS signaling during soybean-RKN interaction. RESULTS: Using 454 technology to explore the common aspects of resistance reaction during both parasitism and resistance phases it was verified that hormone, carbohydrate metabolism and stress related genes were consistently expressed at high levels in infected roots as compared to mock control. Most noteworthy genes include those encoding glycosyltransferases, peroxidases, auxin-responsive proteins and gibberellin-regulated genes. Our data analysis suggests the key role of glycosyltransferases, auxins and components of gibberellin signal transduction, biosynthesis and deactivation pathways in the resistance reaction and their participation in jasmonate signaling and redox homeostasis in mediating aspects of plant growth and responses to biotic stress. CONCLUSIONS: Based on this study we suggest a reasonable model regarding to the complex mechanisms of crosstalk between plant hormones, mainly gibberellins and auxins, which can be crucial to modulate the levels of ROS in the resistance reaction to nematode invasion. The model also includes recent findings concerning to the participation of DELLA-like proteins and ROS signaling controlling plant immune or stress responses. Furthermore, this study provides a dataset of potential candidate genes involved in both nematode parasitism and resistance, which can be tested further for their role in this biological process using functional genomics approaches.
Subject(s)
Disease Resistance/genetics , Gene Expression Profiling , Glycine max/parasitology , Host-Parasite Interactions , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Tylenchoidea/physiology , Animals , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis , Glycine max/genetics , Glycine max/immunology , Glycine max/metabolism , Stress, Physiological/genetics , Transcription, GeneticABSTRACT
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 108 α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.