Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Immunol ; 192(8): 3709-18, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24634490

ABSTRACT

Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Animals , Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/drug effects , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Female , Fingolimod Hydrochloride , Immunosuppressive Agents/pharmacology , Liver/drug effects , Liver/immunology , Liver/parasitology , Lymphocyte Activation/immunology , Lymphoid Tissue/drug effects , Lymphoid Tissue/immunology , Lymphoid Tissue/parasitology , Mice , Mice, Knockout , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Spleen/drug effects , Spleen/immunology , Spleen/parasitology
2.
Am J Pathol ; 165(6): 2123-33, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15579454

ABSTRACT

Tumor necrosis factor (TNF) is critical for the control of visceral leishmaniasis caused by Leishmania donovani. However, the role of the related cytokine lymphotoxin (LT) alpha in this infection is unknown. Here we report that C57BL/6 mice deficient in TNF (B6.TNF(-/-)) or LT alpha (B6.LT alpha(-/-)) have increased susceptibility to hepatic L. donovani infection. Furthermore, the outcome of infection in bone marrow chimeric mice is dependent on donor hematopoietic cells, indicating that developmental defects in lymphoid organs were not responsible for increased susceptibility to L. donovani. Although both LT alpha and TNF regulated the migration of leukocytes into the sinusoidal area of the infected liver, their roles were distinct. LT alpha was essential for migration of leukocytes from periportal areas, an event consistent with LT alpha-dependent up-regulation of VCAM-1 on liver sinusoid lining cells, whereas TNF was essential for leukocyte recruitment to the liver. During visceral leishmaniasis, both cytokines were produced by radio-resistant cells and by CD4(+) T cells. LT alpha and TNF production by the former was required for granuloma assembly, while production of these cytokines by CD4(+) T cells was necessary to control parasite growth. The production of inducible nitric oxide synthase was also found to be deficient in TNF- and LT alpha-deficient infected mice. These results demonstrate that both LT alpha and TNF are required for control of L. donovani infection in noncompensatory ways.


Subject(s)
Leishmania donovani/growth & development , Leishmaniasis, Visceral/immunology , Lymphotoxin-alpha/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Bone Marrow , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Movement , Disease Susceptibility , Female , Genes, RAG-1/genetics , Genes, RAG-1/physiology , Granuloma/immunology , Granuloma/parasitology , Homeodomain Proteins/genetics , Homeodomain Proteins/physiology , Leishmania donovani/physiology , Leishmaniasis, Visceral/parasitology , Leukocytes/parasitology , Leukocytes/pathology , Liver/immunology , Liver/parasitology , Liver/pathology , Lymphotoxin-alpha/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Tumor Necrosis Factor-alpha/genetics , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL