Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Parasitology ; 145(11): 1483-1492, 2018 09.
Article in English | MEDLINE | ID: mdl-29886855

ABSTRACT

Marteilia refringens causes marteiliosis in oysters, mussels and other bivalve molluscs. This parasite previously comprised two species, M. refringens and Marteilia maurini, which were synonymized in 2007 and subsequently referred to as M. refringens 'O-type' and 'M-type'. O-type has caused mass mortalities of the flat oyster Ostrea edulis. We used high throughput sequencing and histology to intensively screen flat oysters and mussels (Mytilus edulis) from the UK, Sweden and Norway for infection by both types and to generate multi-gene datasets to clarify their genetic distinctiveness. Mussels from the UK, Norway and Sweden were more frequently polymerase chain reaction (PCR)-positive for M-type (75/849) than oysters (11/542). We did not detect O-type in any northern European samples, and no histology-confirmed Marteilia-infected oysters were found in the UK, Norway and Sweden, even where co-habiting mussels were infected by the M-type. The two genetic lineages within 'M. refringens' are robustly distinguishable at species level. We therefore formally define them as separate species: M. refringens (previously O-type) and Marteilia pararefringens sp. nov. (M-type). We designed and tested new Marteilia-specific PCR primers amplifying from the 3' end of the 18S rRNA gene through to the 5.8S gene, which specifically amplified the target region from both tissue and environmental samples.


Subject(s)
Cercozoa/classification , Mytilus edulis/parasitology , Ostrea/parasitology , Protozoan Infections, Animal/epidemiology , Animals , High-Throughput Nucleotide Sequencing , Norway , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics , Sweden , United Kingdom
2.
J Fish Dis ; 40(2): 219-229, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27416895

ABSTRACT

We report the first description of a new Rhabdoviridae tentatively named eelpout rhabdovirus (EpRV genus Perhabdovirus). This virus was associated with mass mortalities in eelpout (Zoarces viviparous, Linnaeus) along the Swedish Baltic Sea coast line in 2014. Diseased fish showed signs of central nervous system infection, and brain lesions were confirmed by histology. A cytopathogenic effect was observed in cell culture, but ELISAs for the epizootic piscine viral haemorrhagic septicaemia virus (VHSV), infectious pancreas necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) and spring viraemia of carp virus (SVCV) were negative. Further investigations by chloroform inactivation, indirect fluorescence antibody test and electron microscopy indicated the presence of a rhabdovirus. By deep sequencing of original tissue suspension and infected cell culture supernatant, the full viral genome was assembled and we confirmed the presence of a rhabdovirus with 59.5% nucleotide similarity to the closest relative Siniperca chuatsi rhabdovirus. The full-genome sequence of this new virus, eelpout rhabdovirus (EpRV), has been deposited in GenBank under accession number KR612230. An RT-PCR based on the L-gene sequence confirmed the presence of EpRV in sick/dead eelpout, but the virus was not found in control fish. Additional investigations to characterize the pathogenicity of EpRV are planned.


Subject(s)
Fish Diseases/virology , Genome, Viral , Perciformes , Rhabdoviridae Infections/veterinary , Rhabdoviridae/physiology , Animals , Central Nervous System/virology , Phylogeny , Rhabdoviridae/genetics , Rhabdoviridae Infections/virology , Sequence Analysis, RNA/veterinary , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL