Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Phytother Res ; 33(2): 452-460, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30548344

ABSTRACT

The milk thistle compound Silibinin (i.e., a 1:1 mixture of Silybin A and Silybin B) stimulates vasculogenesis of mouse embryonic stem (ES) cells. Because vasculogenesis and leukopoiesis are interrelated, the effect of Silibinin on leukopoiesis of ES cells was investigated. Treatment of differentiating ES cells with hydrosoluble Silibinin-C-2',3-dihydrogen succinate dose-dependent increased the number of CD18+ , CD45+ , and CD68+ cells, indicating leukocyte/macrophage differentiation. Silibinin treatment activated phosphoinositide 3-kinase (PI3K), AKT (protein kinase B), signal transducer and activator of transcription 3 (STAT3), stimulated hypoxia-induced factor-1α (HIF-1α), and vascular endothelial growth factor receptor 2 (VEGFR2) expression and raised intracellular nitric oxide (NO). Western blot experiments showed that upon coincubation with either the PI3K inhibitor LY294002, the STAT3 inhibitor Stattic, the AKT antagonist AKT inhibitor VIII, or the NO inhibitor L-NAME, the Silibinin-induced expression of CD18, CD45, and CD68 was abolished. Moreover, the stimulation of HIF-1α and VEGFR2 expression was blunted upon STAT3 and PI3K/AKT inhibition. Treatment of differentiating ES cells with L-NAME abolished the stimulation of VEGFR2 and VE-cadherin expression achieved with Silibinin, indicating that NO is involved in vasculogenesis and leukocyte differentiation pathways. In summary, the data of the present study demonstrate that Silibinin stimulates leukocyte differentiation of ES cells, which is associated to vasculogenesis and regulated by PI3K/AKT-, STAT3-, and NO-mediated signaling.


Subject(s)
Leukopoiesis/drug effects , Mouse Embryonic Stem Cells/drug effects , Silybin/pharmacology , Silybum marianum/chemistry , Animals , Chromones/pharmacology , Mice , Morpholines/pharmacology , Nitric Oxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism
2.
Planta Med ; 84(11): 768-778, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29329462

ABSTRACT

Silibinin, the bioactive compound of milk thistle (Silybum marianum), exerts tissue protective and regenerative effects that may include stem cell differentiation toward vascular cells. The purpose of the present study was to investigate whether silibinin stimulates blood vessel formation from mouse embryonic stem (ES) cells and to unravel the underlying signaling cascade. Vascular branching points were assessed by confocal laser scanning microscopy and computer-assisted image analysis of CD31-positive cell structures. Protein expression of vascular markers and activation of protein kinases were determined by western blot. Nitric oxide (NO) generation was investigated by use of the fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. Silibinin dose-dependently increased CD31-positive vascular branching points in embryoid bodies cultivated from ES cells. This was paralleled by increase of protein expression levels for the endothelial-specific markers vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor 2, and hypoxia-inducible factor-1α. Moreover, silibinin increased activation of endothelial nitric oxide synthase (eNOS), which boosted generation of NO in embryoid bodies and enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) as well as phosphoinositide 3-kinase (PI3-K) and AKT. Vasculogenesis, VE-cadherin expression, STAT3 and AKT phosphorylation, NO generation, and eNOS phosphorylation were inhibited by the small molecule STAT3 inhibitor Stattic, AKT inhibitor VIII, the PI3-K inhibitor LY294002, or the NOS inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride. In conclusion, our findings indicate that silibinin induces vasculogenesis of ES cells via activation of STAT3, PI3-K, and AKT, which regulate NO generation by eNOS.


Subject(s)
Cell Differentiation/drug effects , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide/metabolism , STAT3 Transcription Factor/drug effects , Silybum marianum/chemistry , Silymarin/pharmacology , Animals , Chromones/pharmacology , Embryonic Stem Cells/drug effects , Female , Mice , Morpholines/pharmacology , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/drug effects , Signal Transduction/drug effects , Silybin
3.
Stem Cells Int ; 2018: 9215792, 2018.
Article in English | MEDLINE | ID: mdl-30651739

ABSTRACT

The milk thistle (Silybum marianum (L.) Gaertn.) compound silibinin may be an inhibitor of the angiotensin II type 1 (AT1) receptor which is expressed in differentiating embryonic stem (ES) cells and is involved in the regulation of cardiomyogenesis. In the present study, it was demonstrated that silibinin treatment decreased the number of spontaneously contracting cardiac foci and cardiac cell areas differentiated from ES cells as well as contraction frequency and frequency of calcium (Ca2+) spiking. In contrast, angiotensin II (Ang II) treatment stimulated cardiomyogenesis as well as contraction and Ca2+ spiking frequency, which were abolished in the presence of silibinin. Intracellular Ca2+ transients elicited by Ang II in rat smooth muscle cells were not impaired upon silibinin treatment, excluding the possibility that the compound acted on the AT1 receptor. Ang II treatment activated extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways in embryoid bodies which were abolished upon silibinin pretreatment. In summary, our data suggest that silibinin inhibits cardiomyogenesis of ES cells by interfering with Ang II signaling downstream of the AT1 receptor.

SELECTION OF CITATIONS
SEARCH DETAIL