Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 66(1): 435-444, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26537912

ABSTRACT

Two extremely halophilic archaea, strains Cb34T and C170, belonging to the genus Halorubrum, were isolated from the brine of the hypersaline lake Aran-Bidgol in Iran. Cells of the two strains were motile, pleomorphic rods, stained Gram-variable and produced red-pigmented colonies. Strains Cb34T and C170 required 25 % (w/v) salts, pH 7.0 and 37 °C for optimal growth under aerobic conditions; 0.3 M Mg2+ was required. Cells of both isolates were lysed in distilled water and hypotonic treatment with < 10 % NaCl provoked cell lysis. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that these two strains were closely related to Halorubrum cibi B31T (98.8 %) and other members of the genus Halorubrum. In addition, studies based on the rpoB' gene revealed that strains Cb34T and C170 are placed among the species of Halorubrum and are closely related to Halorubrum cibi B31T, with rpoB' gene sequence similarity less than or equal to 95.7 %. The polar lipid patterns of both strains consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The DNA G+C content was 62.1-62.4 mol%. DNA-DNA hybridization studies confirmed that strains Cb34T and C170 constitute a distinct species. Data obtained in this study show that the two strains represent a novel species, for which the name Halorubrum halodurans sp. nov. is proposed. The type strain is Cb34T ( = CECT 8745T = IBRC-M 10233T).


Subject(s)
Halorubrum/classification , Lakes/microbiology , Phylogeny , Saline Waters , Base Composition , DNA, Archaeal/genetics , Halorubrum/genetics , Halorubrum/isolation & purification , Iran , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Int J Syst Evol Microbiol ; 66(5): 2099-2105, 2016 May.
Article in English | MEDLINE | ID: mdl-26928783

ABSTRACT

A novel Gram-stain-negative, straight rod-shaped, non-pigmented, slightly halophilic and alkaliphilic bacterium, designated strain GBPy7T, was isolated from a sample of the coastal-marine wetland Gomishan in Iran. Cells of strain GBPy7T were motile. Growth occurred on media with 1-15 % (w/v) NaCl (optimum 3 %), at pH 7-10 (optimum pH 8.5) and at 4-45 °C (optimum 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that strain GBPy7T belonged to the family Idiomarinaceae. Its closest relatives were Aliidiomarina shirensis AIST (98.1 % 16S rRNA gene sequence similarity) and other Aliidiomarina species (95.9-94.2 %), together with Idiomarina seosinensis CL-SP19T (94.3 %) and Idiomarina fontislapidosi F23T (94.3 %). The major cellular fatty acids of the isolate were iso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c and C18 : 1ω7c and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminophospholipid. Cells of strain GBPy7T contained ubiquinone Q-8. The G+C content of the genomic DNA of this strain was 51.6 mol%. The level of DNA-DNA relatedness between strain GBPy7T and A. shirensis IBRC-M 10414T was 21 %. The physiological, biochemical, genotypic and phylogenetic differences between strain GBPy7T and other previously described taxa indicate that the strain represents a novel species of the genus Aliidiomarina within the family Idiomarinaceae, for which the name Aliidiomarina iranensis sp. nov. is proposed. The type strain is GBPy7T ( = IBRC-M 10763T = CECT 8339T).


Subject(s)
Gammaproteobacteria/classification , Phylogeny , Wetlands , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Iran , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spiro Compounds , Ubiquinone/chemistry
3.
Int J Syst Evol Microbiol ; 65(9): 3148-3154, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26297293

ABSTRACT

A novel halotolerant actinomycete, strain Chem15(T), was isolated from soil around Inche-Broun hypersaline wetland; its taxonomic position was determined based on a polyphasic approach. Strain Chem15(T) was strictly aerobic and tolerated NaCl up to 12.5%. The optimum temperature and pH for growth were 28-30 °C and pH 7.0-7.5, respectively. The cell wall of strain Chem15(T) contained meso-diaminopimelic acid as diamino acid and galactose, arabinose and ribose as whole-cell sugars. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The cellular fatty acids profile consisted of C16 : 0, iso-C18 : 0, C18 : 0 10-methyl and C18 : 1ω9c, and the major respiratory quinone was MK-8(H4cycl). The G+C content of the genomic DNA was 68.0 mol%. The novel strain constituted a distinct phyletic line within the genus Nocardia, based on 16S rRNA gene sequence analysis, and was closely associated with Nocardia sungurluensis DSM 45714(T) and Nocardia alba DSM 44684(T) (98.2 and 98.1% 16S rRNA gene sequence similarity, respectively). However DNA-DNA relatedness and phenotypic data demonstrated that strain Chem15(T) was clearly different from closely related species of the genus Nocardia. It is concluded that the organism should be classified as a representative of a novel species of the genus Nocardia, for which the name Nocardia halotolerans sp. nov. is proposed. The type strain is Chem15(T) ( = IBRC-M 10490(T) = LMG 28544(T)).


Subject(s)
Nocardia , Actinobacteria/genetics , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Molecular Sequence Data , Nocardia/classification , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride , Soil , Soil Microbiology , Wetlands
4.
Int J Syst Evol Microbiol ; 65(10): 3727-3733, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26219545

ABSTRACT

A Gram-stain-positive actinobacterial strain, Miq-4T, was isolated from soil around Meighan wetland in the centre of Iran. Strain Miq-4T was strictly aerobic, catalase- and oxidase-positive. The isolate grew in the presence of 3­15 % (w/v) NaCl, at 20­40 °C and pH 6.0­11.0. The optimum NaCl, temperature and pH for growth were 7.0 %, 30 °C and 7.0­8.5, respectively. The cell wall of strain Miq-4T contained meso-diaminopimelic acid as the diamino acid and glucose and ribose as the whole-cell sugars. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Strain Miq-4T synthesized cellular fatty acids of anteiso- and iso-branched types, including anteiso-C17 : 0, anteiso- C15 : 0 and iso-C16 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and characteristic patterns of 16S rRNA gene signature nucleotides revealed that strain Miq-4T belongs to the family Glycomycetaceae and showed the closest phylogenetic similarity with Haloglycomyces albus YIM 92370T (94.1 % 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain Miq-4T represents a novel species of a new genus in the family Glycomycetaceae, for which the name Salininema proteoliyticum gen. nov., sp. nov. is proposed. The type strain of the type species is Miq-4T ( = IBRC-M 10908T = LMG 28391T). An emended description of the family Glycomycetaceae is also proposed in order to include features of the new genus.


Subject(s)
Actinomycetales/classification , Phylogeny , Soil Microbiology , Wetlands , Actinomycetales/genetics , Actinomycetales/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Iran , Molecular Sequence Data , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
5.
Syst Appl Microbiol ; 41(3): 198-212, 2018 May.
Article in English | MEDLINE | ID: mdl-29429564

ABSTRACT

The application of tandem MALDI-TOF MS screening with 16S rRNA gene sequencing of selected isolates has been demonstrated to be an excellent approach for retrieving novelty from large-scale culturing. The application of such methodologies in different hypersaline samples allowed the isolation of the culture-recalcitrant Salinibacter ruber second phylotype (EHB-2) for the first time, as well as a new species recently isolated from the Argentinian Altiplano hypersaline lakes. In this study, the genome sequences of the different species of the phylum Rhodothermaeota were compared and the genetic repertoire along the evolutionary gradient was analyzed together with each intraspecific variability. Altogether, the results indicated an open pan-genome for the family Salinibacteraceae, as well as the codification of relevant traits such as diverse rhodopsin genes, CRISPR-Cas systems and spacers, and one T6SS secretion system that could give ecological advantages to an EHB-2 isolate. For the new Salinibacter species, we propose the name Salinibacter altiplanensis sp. nov. (the designated type strain is AN15T=CECT 9105T=IBRC-M 11031T).


Subject(s)
Bacteroidetes/classification , Genome, Bacterial , Lakes/microbiology , Phylogeny , Salinity , Altitude , Argentina , Bacterial Typing Techniques , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , CRISPR-Cas Systems , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rhodopsin/genetics , Sequence Analysis, DNA , Type VI Secretion Systems/genetics , Water Microbiology
6.
Microbiol Res ; 162(4): 369-77, 2007.
Article in English | MEDLINE | ID: mdl-16638631

ABSTRACT

An extracellular protease was produced under stress conditions of high temperature and high salinity by a newly isolated moderate halophile, Salinivibrio sp. strain AF-2004 in a basal medium containing peptone, beef extract, glucose and NaCl. A modification of Kunitz method was used for protease assay. The isolate was capable of producing protease in the presence of sodium chloride, sodium sulfate, sodium nitrate, sodium nitrite, potassium chloride, sodium acetate and sodium citrate. The maximum protease was secreted in the presence of 7.5 to 10% (w/v) sodium sulfate or 3% (w/v) sodium acetate (4.6 U ml(-1)). Various carbon sources including glucose, lactose, casein and peptone were capable of inducing enzyme production. The optimum pH, temperature and aeration for enzyme production were 9.0, 32 degrees C and 220 rpm, respectively. The enzyme production corresponded with growth and reached a maximum level during the mid-stationary phase. Maximum protease activity was exhibited in the medium containing 1% (w/v) NaCl at 60 degrees C, with 18% and 41% activity reductions at temperature 50 and 70 degrees C, respectively. The optimum pH for enzyme activity was 8.5, with 86% and 75% residual activities at pH 10 and 6, respectively. The activity of enzyme was inhibited by EDTA. These results suggest that the protease secreted by Salinivibrio sp. strain AF-2004 is industrially important from the perspectives of its activity at a broad pH ranges (5.0-10.0), its moderate thermoactivity in addition to its high tolerance to a wide range of salt concentration (0-10% NaCl).


Subject(s)
Bacterial Proteins/biosynthesis , Metalloproteases/biosynthesis , Vibrionaceae/enzymology , Carbon/metabolism , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Enzyme Stability , Genes, rRNA , Hydrogen-Ion Concentration , Metalloproteases/chemistry , Molecular Sequence Data , Phylogeny , Potassium Chloride/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sodium Compounds/metabolism , Temperature , Vibrionaceae/classification , Vibrionaceae/growth & development , Vibrionaceae/isolation & purification , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL