Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Bioanal Chem ; 413(5): 1383-1393, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33404746

ABSTRACT

Nitric oxide (NO) and its by-products are important biological signals in human physiology and pathology particularly in the vascular and immune systems. Thus, in situ determination of the NO-related molecule (NOx) levels using embedded sensors is of high importance particularly in the context of cellular biocompatibility testing. However, NOx analytical reference method dedicated to the evaluation of biomaterial biocompatibility testing is lacking. Herein, we demonstrate a PAPA-NONOate-based reference method for the calibration of NOx sensors. After, the validation of this reference method and its potentialities were demonstrated for the detection of the oxidative stress-related NO secretion of vascular endothelial cells in a 3D tissue issued from 3D printing. Such NOx detection method can be an integral part of cell response to biomaterials. Graphical abstract.


Subject(s)
Culture Media/chemistry , Nitrogen Oxides/analysis , Cell Culture Techniques/instrumentation , Endothelial Cells/chemistry , Endothelial Cells/cytology , Equipment Design , Human Umbilical Vein Endothelial Cells , Humans , Luminescent Measurements/instrumentation
2.
Talanta ; 229: 122275, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33838777

ABSTRACT

There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.


Subject(s)
Biosensing Techniques , Microfluidics , Cell Culture Techniques , Hydrogen Peroxide , Lactic Acid , Nitrites
SELECTION OF CITATIONS
SEARCH DETAIL