Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(14): 16601-16610, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35352561

ABSTRACT

Conductive nanofillers, if integrated in an organized manner, can improve the transport properties of polymer matrices without compromising on their light weight. However, the relationship between the particle assemblies and transport properties of such nanocomposites, especially the competing effects of connected nanofiller pathways compared to resistances at interparticle contacts, has not been quantitatively studied. In this work, with the model nanocomposite of maghemite nanoparticles in epoxy, a novel fabrication method has been demonstrated to align nanofillers and control the interparticle contact amount within such a nanofiller assembly, using nanoparticle surface functionalization and oscillating magnetic field application. The nanofiller assembly cross-sectional areas were measured by processing micro-CT images and compared with the measured electrical and thermal properties of the nanocomposites. In terms of thermal transport, when the nanofiller assembly cross-sectional area was small, the dominance of conductivity pathways was observed up to ∼4.7 vol %, while interfacial thermal resistance began to dominate when the nanofiller assembly cross-sectional area became larger than 2700 µm2.

2.
Membranes (Basel) ; 10(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751820

ABSTRACT

Membrane distillation (MD) has shown promise for concentrating a wide variety of brines, but the knowledge is limited on how different brines impact salt scaling, flux decline, and subsequent wetting. Furthermore, past studies have lacked critical details and analysis to enable a physical understanding, including the length of experiments, the inclusion of salt kinetics, impact of antiscalants, and variability between feed-water types. To address this gap, we examined the system performance, water recovery, scale formation, and saturation index of a lab-scale vacuum membrane distillation (VMD) in long-running test runs approaching 200 h. The tests provided a comparison of a variety of relevant feed solutions, including a synthetic seawater reverse osmosis brine with a salinity of 8.0 g/L, tap water, and NaCl, and included an antiscalant. Saturation modeling indicated that calcite and aragonite were the main foulants contributing to permeate flux reduction. The longer operation times than typical studies revealed several insights. First, scaling could reduce permeate flux dramatically, seen here as 49% for the synthetic brine, when reaching a high recovery ratio of 91%. Second, salt crystallization on the membrane surface could have a long-delayed but subsequently significant impact, as the permeate flux experienced a precipitous decline only after 72 h of continuous operation. Several scaling-resistant impacts were observed as well. Although use of an antiscalant did not reduce the decrease in flux, it extended membrane operational time before surface foulants caused membrane wetting. Additionally, numerous calcium, magnesium, and carbonate salts, as well as silica, reached very high saturation indices (>1). Despite this, scaling without wetting was often observed, and scaling was consistently reversible and easily washed. Under heavy scaling conditions, many areas lacked deposits, which enabled continued operation; existing MD performance models lack this effect by assuming uniform layers. This work implies that longer times are needed for MD fouling experiments, and provides further scaling-resistant evidence for MD.

3.
ACS Appl Mater Interfaces ; 10(15): 12603-12611, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29565115

ABSTRACT

Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

SELECTION OF CITATIONS
SEARCH DETAIL