Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2708, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177720

ABSTRACT

This research examines the thin-film nanomaterial movement in three dimensions over a stretchable rotating inclined surface. Similarity variables are used to transform fundamental systems of equations into a set of first-order differential equations. The Runge-Kutta Fourth Order approach is utilized for numerical computations. The impact of embedded parameters (variable thickness, unsteadiness, Prandtl number, Schmidt number, Brownian-motion, and thermophoretic) is examined carefully. Physically and statistically, the indispensable terms namely Nusselt and Sherwood numbers are also investigated. Results indicated that, as the dimensionless parameter S raises, the temperature field decreases. In reality, as the values of S increases, heat transmission rate from the disc to the flowing fluid reduces. Internal collisions of liquid particles are physically hampered at a low rate. The momentum boundary layer is cooled when the parameter S is increased, as a consequence local Nusselt number rises. Sherwood number decreases as the parameter S increases because of inter collision of the microscopic fluid particles. Enhancing in the apparent viscosity and concentrations of the chemical reactions, a higher Schmidt number, Sc, lowers the Sherwood number. With increasing values of Prandtl number the Nusselt number decreases. For validation purpose, the RK4 method is also compared with homotopy analysis method (HAM). The results are further verified by establishing an excellent agreement with published data.

2.
Sci Rep ; 12(1): 4169, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264611

ABSTRACT

In this article, we are focusing on heat and mass transfer through a Multicomponent tubular reactor containing a cooling jacket by thermal decomposition of propylene oxide in water. The chemical reaction is an irreversible, 1st order reaction and an exothermic reaction that yields propylene glycol with enthalpy = -84,666 J/mol. The constant rate of the reaction is followed by the Arrhenius equation in which the activation energy is taken on a trial basis in the range from 75,000 to 80,000 J/mol with a fixed frequency factor. For the fluid to flow, the Reynolds number is kept in the range from 100 to 1000. The three partial differential equations of mass, momentum, and energy are coupled to study heat and mass transfer in a tubular reactor by using the chemistry interface in COMSOL Multiphysics 5.4. The initial concentration of propylene oxide is tested in the range from 2 to 3% and the thermal conductivity of the mixture is tested in the range 0.599-0.799. It was found that the amount deactivated of the compound decreases with an increase in Reynolds number. Propylene oxide is decomposed at about 99.8% at Re = 100 at lower activation energy and gives the total maximum enthalpy change in the tubular reactor. Observing the relationship between Sherwood numbers to Nusselt numbers, it was deducted that the convective heat transfer is opposite to convective mass transfer for high Reynolds numbers.

3.
Nanomaterials (Basel) ; 12(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214992

ABSTRACT

The present work discusses the 2D unsteady flow of second grade hybrid nanofluid in terms of heat transfer and MHD effects over a stretchable moving flat horizontal porous plate. The entropy of system is taken into account. The magnetic field and the Joule heating effects are also considered. Tiny-sized nanoparticles of silicon carbide and titanium oxide dispersed in a base fluid, kerosene oil. Furthermore, the shape factors of tiny-sized particles (sphere, bricks, tetrahedron, and platelets) are explored and discussed in detail. The mathematical representation in expressions of PDEs is built by considering the heat transfer mechanism owing to the effects of Joule heating and viscous dissipation. The present set of PDEs (partial differential equations) are converted into ODEs (ordinary differential equations) by introducing suitable transformations, which are then resolved with the bvp4c (shooting) scheme in MATLAB. Graphical expressions and numerical data are obtained to scrutinize the variations of momentum and temperature fields versus different physical constraints.

4.
J Mol Model ; 27(9): 245, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34378059

ABSTRACT

Nanoscale materials have gained considerable interest because of their special properties and wide range of applications. Many types of boron nitride at the nanoscale have been realized, including nanotubes, nanocones, fullerenes, tori, and graphene sheets. The connection of these structures at the nanoscale leads to merged structures that have enhanced features and applications. Modeling the joining between nanostructures has been adopted by different methods. Namely, carbon nanostructures have been joined by minimizing the elastic energy in symmetric configurations. In other words, the only considerable curvature in the elastic energy is the axial curvature. Accordingly, because it has nanoscale structures similar to those in carbon, BN can also be joined and connected by using this method. On the other hand, different methods have been proposed to consider the rotational curvature because it has a similar size. Based on that argument, the Willmore energy, which depends on both curvatures, has been minimized to join carbon nanostructures. This energy is used to identify the joining region, especially for a three-dimensional structure. In this paper, we expand the use of Willmore energy to cover the joining of boron nitride nanostructures. Therefore, because catenoids are absolute minimizers of this energy, pieces of catenoids can be used to connect nanostructures. In particular, we joined boron nitride fullerene to three other BN nanostructures: nanotube, fullerene, and torus. For now, there are no experimental or simulation data for comparison with the theoretical connecting structures predicted by this study, which is some justification for the suggested simple model shown in this research. Ultimately, various nanoscale BN structures might be connected by considering the same method, which may be considered in future work.

5.
Polymers (Basel) ; 13(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771253

ABSTRACT

In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat transport processes were solved using the Runge-Kutta fourth order method. A distinguished constituent of this study was the use of a porous matrix that acted as an insulator to reduce heat loss. In this paper we discuss the effects of numerous development parameters, including ß0, Q, m, Ω, Kp, and Br (non-Newtonian parameter, heat-producing parameter, viscosity parameter, variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore, the effects of two other parameters, D and M, are also discussed as they relate to velocity and temperature distributions. We observed that the velocity profiles decreased with increasing values of Kp. Fluid velocity increased as the values of M, Br, N, and D increased, while it decreased when the values of Kp, Q and D increased. For increasing values of M, the temperature profile showed increasing behavior, while Br and Q showed decreasing behavior. Furthermore, the present work is validated by comparison with HAM and previously published work, with good results.

SELECTION OF CITATIONS
SEARCH DETAIL