Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cells ; 12(21)2023 10 30.
Article in English | MEDLINE | ID: mdl-37947624

ABSTRACT

Nucleolar and Spindle-Associated Protein 1 (NuSAP1) is an important mitotic regulator, implicated in control of mitotic microtubule stability and chromosome segregation. NuSAP1 regulates these processes by interacting with several protein partners. Its abundance, activity and interactions are therefore tightly regulated during mitosis. Protein conjugation with SUMO (Small Ubiquitin-like MOdifier peptide) is a reversible post-translational modification that modulates rapid changes in the structure, interaction(s) and localization of proteins. NuSAP1 was previously found to interact with RANBP2, a nucleoporin with SUMO ligase and SUMO-stabilizing activity, but how this interaction affects NuSAP1 activity has remained elusive. Here, we show that NuSAP1 interacts with RANBP2 and forms proximity ligation products with SUMO2/3 peptides in a RANBP2-dependent manner at key mitotic sites. A bioinformatic search identified two putative SUMO consensus sites in NuSAP1, within the DNA-binding and the microtubule-binding domains, respectively. Site-specific mutagenesis, and mitotic phenotyping in cell lines expressing each NuSAP1 mutant version, revealed selective roles of each individual site in control of NuSAP1 localization and in generation of specific mitotic defects and distinct fates in daughter cells. These results identify therefore two new regulatory sites for NuSAP1 functions and implicate RANBP2 in control of NuSAP1 activity.


Subject(s)
Microtubule-Associated Proteins , Sumoylation , Humans , Consensus , HeLa Cells , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism
2.
Eur J Med Chem ; 246: 114997, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36502578

ABSTRACT

We synthesized a new inhibitor of tubulin polymerization, the pyrrole (1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrrol-3-yl)(3,4,5-trimethoxy-phenyl)methanone 6 (RS6077). Compound 6 inhibited the growth of multiple cancer cell lines, with IC50 values in the nM range, without affecting the growth of non-transformed cells. The novel agent arrested cells in the G2/M phase of the cell cycle in both transformed and non-transformed cell lines, but single cell analysis by time-lapse video recording revealed a remarkable selectivity in cell death induction by compound 6: in RPE-1 non-transformed cells mitotic arrest induced was not necessarily followed by cell death; in contrast, in HeLa transformed and in lymphoid-derived transformed AHH1 cell lines, cell death was effectively induced during mitotic arrest in cells that fail to complete mitosis. Importantly, the agent also inhibited the growth of the lymphoma TMD8 xenograft model. Together these findings suggest that derivative 6 has a selective efficacy in transformed vs non-transformed cells and indicate that the same compound has potential as novel therapeutic agent to treat lymphomas. Compound 6 showed good metabolic stability upon incubation with human liver microsomes.


Subject(s)
Apoptosis , Lymphoma , Humans , Cell Death , Mitosis , HeLa Cells , Tubulin/metabolism , Lymphoma/drug therapy , Cell Line, Tumor , Cell Proliferation
3.
Front Cell Dev Biol ; 10: 1041938, 2022.
Article in English | MEDLINE | ID: mdl-36438555

ABSTRACT

Nuclear import receptors ensure the recognition and transport of proteins across the nuclear envelope into the nucleus. In addition, as diverse processes as mitosis, post-translational modifications at mitotic exit, ciliogenesis, and phase separation, all share a common need for regulation by nuclear import receptors - particularly importin beta-1 and importin beta-2/transportin - independent on nuclear import. In particular, 1) nuclear import receptors regulate the mitotic spindle after nuclear envelope breakdown, 2) they shield cargoes from unscheduled ubiquitination, regulating their timely proteolysis; 3) they regulate ciliary factors, crucial to cell communications and tissue architecture during development; and 4) they prevent phase separation of toxic proteins aggregates in neurons. The balance of nuclear import receptors to cargoes is critical in all these processes, albeit in opposite directions: overexpression of import receptors, as often found in cancer, inhibits cargoes and impairs downstream processes, motivating the therapeutic design of specific inhibitors. On the contrary, elevated expression is beneficial in neuronal contexts, where nuclear import receptors are regarded as potential therapeutic tools in counteracting the formation of aggregates that may cause neurodegeneration. This paradox demonstrates the amplitude of nuclear import receptors-dependent functions in different contexts and adds complexity in considering their therapeutic implications.

SELECTION OF CITATIONS
SEARCH DETAIL