Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Nano ; 12(2): 1837-1848, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29369611

ABSTRACT

Single-atom B or N substitutional doping in single-layer suspended graphene, realized by low-energy ion implantation, is shown to induce a dampening or enhancement of the characteristic interband π plasmon of graphene through a high-resolution electron energy loss spectroscopy study using scanning transmission electron microscopy. A relative 16% decrease or 20% increase in the π plasmon quality factor is attributed to the presence of a single substitutional B or N atom dopant, respectively. This modification is in both cases shown to be relatively localized, with data suggesting the plasmonic response tailoring can no longer be detected within experimental uncertainties beyond a distance of approximately 1 nm from the dopant. Ab initio calculations confirm the trends observed experimentally. Our results directly confirm the possibility of tailoring the plasmonic properties of graphene in the ultraviolet waveband at the atomic scale, a crucial step in the quest for utilizing graphene's properties toward the development of plasmonic and optoelectronic devices operating at ultraviolet frequencies.

2.
ACS Nano ; 9(11): 11398-407, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26446310

ABSTRACT

A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations is used to describe the electronic structure modifications incurred by free-standing graphene through two types of single-atom doping. The N K and C K electron energy loss transitions show the presence of π* bonding states, which are highly localized around the N dopant. In contrast, the B K transition of a single B dopant atom shows an unusual broad asymmetric peak which is the result of delocalized π* states away from the B dopant. The asymmetry of the B K toward higher energies is attributed to highly localized σ* antibonding states. These experimental observations are then interpreted as direct fingerprints of the expected p- and n-type behavior of graphene doped in this fashion, through careful comparison with density functional theory calculations.

SELECTION OF CITATIONS
SEARCH DETAIL