Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Semin Cancer Biol ; 86(Pt 2): 543-554, 2022 11.
Article in English | MEDLINE | ID: mdl-35398266

ABSTRACT

Small cell lung cancer (SCLC) is an extremely aggressive neuroendocrine tumor, accounting for approximated 13% of all lung cancer cases. SCLC is characterized by rapid growth and early metastasis. Despite marked improvements in the number and efficacy of targeted, therapeutic options and overall survival rates in SCLC have remained nearly unchanged for almost three decades. The lack of significant progress can be attributed to our poor understanding of the biology of SCLC. Although immune checkpoint inhibitors were recently approved as front-line therapies for SCLC, we still need to better understand the mechanisms responsible for the selective vulnerability of some SCLCs to these inhibitors. Recent work utilizing sequencing data and single cell analyses identified four distinct subsets of SCLC, based on the expression levels of the transcription factors ASCL1, NEUROD1, POU2F3 and YAP1. Each subset was found to have its own distinct biology and therapeutic vulnerabilities. However, these subsets appear to be phenotypically unstable, representing snapshots in the gradual evolution of a tumor that exhibits significant plasticity. Tumor evolution, a product of this plasticity, results in the emergence of significant intratumoral heterogeneity which plays an important role in multiple aspects of SCLC development and progression, including cell survival and proliferation, metastasis and angiogenesis. The recent paradigm shifting discoveries in the biology of SCLC are now beginning to inform the design of new therapeutic strategies for the management of this intractable disease.


Subject(s)
Lung Neoplasms , Neuroendocrine Tumors , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Transcription Factors
2.
Mol Cancer ; 15(1): 47, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27296891

ABSTRACT

BACKGROUND: Fusion proteins have unique oncogenic properties and their identification can be useful either as diagnostic or therapeutic targets. Next generation sequencing data have previously shown a fusion gene formed between Rad51C and ATXN7 genes in the MCF7 breast cancer cell line. However, the existence of this fusion gene in colorectal patient tumor tissues is largely still unknown. METHODS: We evaluated for the presence of Rad51C-ATXN7 fusion gene in colorectal tumors and cells by RT-PCR, PCR, Topo TA cloning, Real time PCR, immunoprecipitation and immunoblotting techniques. RESULTS: We identified two forms of fusion mRNAs between Rad51C and ATXN7 in the colorectal tumors, including a Variant 1 (fusion transcript between Rad51C exons 1-7 and ATXN7 exons 6-13), and a Variant 2 (between Rad51C exons 1-6 and ATXN7 exons 6-13). In silico analysis showed that the Variant 1 produces a truncated protein, whereas the Variant 2 was predicted to produce a fusion protein with molecular weight of 110 KDa. Immunoprecipitation and Western blot analysis further showed a 110 KDa protein in colorectal tumors. 5-Azacytidine treatment of LS-174 T cells caused a 3.51-fold increase in expression of the fusion gene (Variant 2) as compared to no treatment controls evaluated by real time PCR. CONCLUSION: In conclusion we found a fusion gene between DNA repair gene Rad51C and neuro-cerebral ataxia Ataxin-7 gene in colorectal tumors. The in-frame fusion transcript of Variant 2 results in a fusion protein with molecular weight of 110 KDa. In addition, we found that expression of fusion gene is associated with functional impairment of Fanconi Anemia (FA) DNA repair pathway in colorectal tumors. The expression of Rad51C-ATXN7 in tumors warrants further investigation, as it suggests the potential of the fusion gene in treatment and predictive value in colorectal cancers.


Subject(s)
Ataxin-7/genetics , Cloning, Molecular/methods , Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , Oncogene Proteins, Fusion/genetics , Ataxin-7/metabolism , Azacitidine/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Computer Simulation , DNA Methylation/drug effects , DNA Repair , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Genetic Variation , Humans , Molecular Weight , Oncogene Proteins, Fusion/drug effects , Oncogene Proteins, Fusion/metabolism
3.
Mol Cell ; 30(1): 61-72, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18406327

ABSTRACT

Histone deacetylases (HDACs) are enzymes that modify key residues in histones to regulate chromatin architecture, and they play a vital role in cell survival, cell-cycle progression, and tumorigenesis. To understand the function of Hdac3, a critical component of the N-CoR/SMRT repression complex, a conditional allele of Hdac3 was engineered. Cre-recombinase-mediated inactivation of Hdac3 led to a delay in cell-cycle progression, cell-cycle-dependent DNA damage, and apoptosis in mouse embryonic fibroblasts (MEFs). While no overt defects in mitosis were observed in Hdac3-/- MEFs, including normal H3Ser10 phosphorylation, DNA damage was observed in Hdac3-/- interphase cells, which appears to be associated with defective DNA double-strand break repair. Moreover, we noted that Hdac3-/- MEFs were protected from DNA damage when quiescent, which may provide a mechanistic basis for the action of HDAC inhibitors on cycling tumor cells.


Subject(s)
DNA Damage , Gene Expression Regulation , Histone Deacetylases/metabolism , S Phase/physiology , Animals , Apoptosis/physiology , Caffeine/metabolism , Cells, Cultured , DNA Repair , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression Profiling , Histone Deacetylases/genetics , Humans , Mice , Mice, Knockout , Mitosis/physiology , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/therapy , Oligonucleotide Array Sequence Analysis , Phenotype , Phosphodiesterase Inhibitors/metabolism , Radiation, Ionizing
4.
Mol Cell Proteomics ; 11(10): 916-32, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22761400

ABSTRACT

Advances in proteomic analysis of human samples are driving critical aspects of biomarker discovery and the identification of molecular pathways involved in disease etiology. Toward that end, in this report we are the first to use a standardized shotgun proteomic analysis method for in-depth tissue protein profiling of the two major subtypes of nonsmall cell lung cancer and normal lung tissues. We identified 3621 proteins from the analysis of pooled human samples of squamous cell carcinoma, adenocarcinoma, and control specimens. In addition to proteins previously shown to be implicated in lung cancer, we have identified new pathways and multiple new differentially expressed proteins of potential interest as therapeutic targets or diagnostic biomarkers, including some that were not identified by transcriptome profiling. Up-regulation of these proteins was confirmed by multiple reaction monitoring mass spectrometry. A subset of these proteins was found to be detectable and differentially present in the peripheral blood of cases and matched controls. Label-free shotgun proteomic analysis allows definition of lung tumor proteomes, identification of biomarker candidates, and potential targets for therapy.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Neoplasm Proteins/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Case-Control Studies , Chromatography, Liquid , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Mass Spectrometry , Neoplasm Proteins/metabolism , Neoplasm Staging , Proteomics/methods , Tandem Mass Spectrometry
5.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826292

ABSTRACT

The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.

6.
J Natl Cancer Inst ; 115(11): 1404-1419, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37195421

ABSTRACT

BACKGROUND: We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS: The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS: Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS: Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Receptor, Adenosine A2B/metabolism , Tumor Microenvironment , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Immunosuppression Therapy , Adenosine/metabolism , Phosphates , Cell Line, Tumor
7.
EMBO J ; 27(7): 1017-28, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-18354499

ABSTRACT

Histone deacetylase 3 (Hdac3) is an enzymatic component of transcriptional repression complexes recruited by the nuclear hormone receptors. Inactivation of Hdac3 in cancer cell lines triggered apoptosis, and removal of Hdac3 in the germ line of mice caused embryonic lethality. Therefore, we deleted Hdac3 in the postnatal mouse liver. These mice developed hepatomegaly, which was the result of hepatocyte hypertrophy, and these morphological changes coincided with significant imbalances between carbohydrate and lipid metabolism. Loss of Hdac3 triggered changes in gene expression consistent with inactivation of repression mediated by nuclear hormone receptors. Loss of Hdac3 also increased the levels of Ppar gamma2, and treatment of these mice with a Ppar gamma antagonist partially reversed the lipid accumulation in the liver. In addition, gene expression analysis identified mammalian target of rapamycin signalling as being activated after deletion of Hdac3, and inhibition by rapamycin affected the accumulation of neutral lipids in Hdac3-null livers. Thus, Hdac3 regulates metabolism through multiple signalling pathways in the liver, and deletion of Hdac3 disrupts normal metabolic homeostasis.


Subject(s)
Gene Deletion , Gene Regulatory Networks , Histone Deacetylases/deficiency , Liver/enzymology , Acetylation/drug effects , Animals , Animals, Newborn , Cholesterol/biosynthesis , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Hepatocytes/drug effects , Hepatocytes/enzymology , Histone Deacetylases/metabolism , Homeostasis/drug effects , Hypertrophy , Hypoglycemia/enzymology , Insulin/blood , Integrases/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Mice , Organ Specificity/drug effects , PPAR gamma/metabolism , Protein Kinases/metabolism , TOR Serine-Threonine Kinases
8.
Neoplasia ; 32: 100824, 2022 10.
Article in English | MEDLINE | ID: mdl-35914370

ABSTRACT

Non-small cell lung cancer (NSCLC) is a heterogeneous disease with genetic and environmental parameters that influence cell metabolism. Because of the complex interplay of environmental factors within the tumor microenvironment (TME) and the profound impact of these factors on the metabolic activities of tumor and immune cells, there is an emerging interest to advance the understanding of these diverse metabolic phenotypes in the TME. High levels of adenosine are characteristic of the TME, and adenosine can have a significant impact on both tumor cell growth and the immune response. Consistent with this, we showed in NSCLC data from TCGA that high expression of the A2BR leads to worse outcome and that expression of A2BR may be different for different mutation backgrounds. We then investigated the metabolic reprogramming of tumor cells and immune cells (T and dendritic cells) by adenosine. We used A2AR and A2BR antagonism or agonism as well as receptor knockout animals to explore whether these treatments altered specific immune compartments or conferred specific therapeutic vulnerabilities. Using the seahorse assay, we found that an A2BR antagonist modulates oxidative stress homeostasis in NSCLC cell lines. In addition, we found distinct metabolic roles of A2AR and A2BR receptors in T cell activation and dendritic cell maturation. These data suggest potential mechanisms and therapeutic benefits of A2 receptor antagonist therapy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenosine , Animals , Receptor, Adenosine A2A , Receptor, Adenosine A2B , Tumor Microenvironment
9.
J Extracell Vesicles ; 11(9): e12258, 2022 09.
Article in English | MEDLINE | ID: mdl-36093740

ABSTRACT

Conventional PD-L1 immunohistochemical tissue biopsies only predict 20%-40% of non-small cell lung cancer (NSCLC) patients that will respond positively to anti-PD-1/PD-L1 immunotherapy. Herein, we present an immunogold biochip to quantify single extracellular vesicular RNA and protein (Au SERP) as a non-invasive alternative. With only 20 µl of purified serum, PD-1/PD-L1 proteins on the surface of extracellular vesicles (EVs) and EV PD-1/PD-L1 messenger RNA (mRNA) cargo were detected at a single-vesicle resolution and exceeded the sensitivities of their bulk-analysis conventional counterparts, ELISA and qRT-PCR, by 1000 times. By testing a cohort of 27 non-responding and 27 responding NSCLC patients, Au SERP indicated that the single-EV mRNA biomarkers surpass the single-EV protein biomarkers in predicting patient responses to immunotherapy. Dual single-EV PD-1/PD-L1 mRNA detection differentiated responders from non-responders with an accuracy of 72.2% and achieved an NSCLC diagnosis accuracy of 93.2%, suggesting the potential for Au SERP to provide enhanced immunotherapy predictions and cancer diagnoses within the clinical setting.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , B7-H1 Antigen/genetics , Biomarkers , Carcinoma, Non-Small-Cell Lung/genetics , Extracellular Vesicles/metabolism , Humans , Immunologic Factors/therapeutic use , Immunotherapy , Lung Neoplasms/genetics , RNA/therapeutic use , RNA, Messenger/metabolism
10.
JTO Clin Res Rep ; 2(10): 100230, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34647108

ABSTRACT

INTRODUCTION: This study investigates the immune profile of the primary lung tumors and the corresponding brain metastasis from patients with NSCLC using multiplex fluorescence immunohistochemistry. METHODS: The study evaluated 34 patients who underwent autopsy or surgical resection for brain metastasis and autopsy, surgical resection, or core biopsy for primary lung cancer. We compared the densities of various immune cells in the primary tumors and the brain metastases by multiplex fluorescence immunohistochemical analysis. RESULTS: The density of CD4-positive (CD4+) T-cells, CD8-positive T-cells, and CD4+ Foxp3-positive T-cells were statistically higher in both tumor and stromal areas in primary lung cancer specimens when compared with brain metastases samples (p < 0.0001). Only CD204-positive cells were statistically higher in the tumor areas of the brain metastases (p = 0.0118). Tumor-infiltrating lymphocytes associated with brain metastases positively correlated with overall survival, but primary lung tumor-infiltrating lymphocytes did not. The density of CD4+ and CD4+ Foxp3-positive T-cells in brain metastases with radiation was statistically higher in the carcinoma and stromal areas compared with those without radiation (p = 0.0343, p = 0.0173). CONCLUSIONS: Our findings that CD204-positive cells were higher in brain metastases may have broader implications for treatment as these macrophages may be immunosuppressive and make the immune environment less reactive. Furthermore, the finding that the density of CD4+ T-cells was higher in cancer and stroma areas of brain metastases after radiotherapy supports the addition of immunotherapy to radiation therapy in the treatment of brain metastases in NSCLC.

11.
Cell Death Dis ; 12(6): 577, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088900

ABSTRACT

Small cell lung cancer (SCLC) remains a deadly form of cancer, with a 5-year survival rate of less than 10 percent, necessitating novel therapies. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein that is emerging as a therapeutic target and is co-expressed with BCL2 in multiple tumor types due to microRNA coregulation. We hypothesize that ROR1-targeted therapy is effective in small cell lung cancer and synergizes with therapeutic BCL2 inhibition. Tissue microarrays (TMAs) and formalin-fixed paraffin-embedded (FFPE) SCLC patient samples were utilized to determine the prevalence of ROR1 and BCL2 expression in SCLC. Eight SCLC-derived cell lines were used to determine the antitumor activity of a small molecule ROR1 inhibitor (KAN0441571C) alone and in combination with the BCL2 inhibitor venetoclax. The Chou-Talalay method was utilized to determine synergy with the drug combination. ROR1 and BCL2 protein expression was identified in 93% (52/56) and 86% (48/56) of SCLC patient samples, respectively. Similarly, ROR1 and BCL2 were shown by qRT-PCR to have elevated expression in 79% (22/28) and 100% (28/28) of SCLC patient samples, respectively. KAN0441571C displayed efficacy in 8 SCLC cell lines, with an IC50 of 500 nM or less. Synergy as defined by a combination index of <1 via the Chou-Talalay method between KAN0441571C and venetoclax was demonstrated in 8 SCLC cell lines. We have shown that ROR1 inhibition is synergistic with BCL2 inhibition in SCLC models and shows promise as a novel therapeutic target in SCLC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , Small Cell Lung Carcinoma/drug therapy , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cell Line, Tumor , Drug Synergism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Molecular Targeted Therapy , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/biosynthesis , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Sulfonamides/administration & dosage , Survival Analysis
12.
Cancer Res ; 81(16): 4194-4204, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34045189

ABSTRACT

STK11 (liver kinase B1, LKB1) is the fourth most frequently mutated gene in lung adenocarcinoma, with loss of function observed in up to 30% of all cases. Our previous work identified a 16-gene signature for LKB1 loss of function through mutational and nonmutational mechanisms. In this study, we applied this genetic signature to The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples and discovered a novel association between LKB1 loss and widespread DNA demethylation. LKB1-deficient tumors showed depletion of S-adenosyl-methionine (SAM-e), which is the primary substrate for DNMT1 activity. Lower methylation following LKB1 loss involved repetitive elements (RE) and altered RE transcription, as well as decreased sensitivity to azacytidine. Demethylated CpGs were enriched for FOXA family consensus binding sites, and nuclear expression, localization, and turnover of FOXA was dependent upon LKB1. Overall, these findings demonstrate that a large number of lung adenocarcinomas exhibit global hypomethylation driven by LKB1 loss, which has implications for both epigenetic therapy and immunotherapy in these cancers. SIGNIFICANCE: Lung adenocarcinomas with LKB1 loss demonstrate global genomic hypomethylation associated with depletion of SAM-e, reduced expression of DNMT1, and increased transcription of repetitive elements.


Subject(s)
AMP-Activated Protein Kinase Kinases/physiology , Adenocarcinoma/genetics , DNA Methylation , Lung Neoplasms/genetics , S-Adenosylmethionine/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Adenocarcinoma/metabolism , Cell Line , Cell Survival , Cluster Analysis , Computational Biology , CpG Islands , Databases, Genetic , Epigenesis, Genetic , Genes, ras , Humans , Lung Neoplasms/metabolism , Methionine , Mutation , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins p21(ras)/genetics , Repetitive Sequences, Nucleic Acid
13.
J Thorac Oncol ; 15(11): 1773-1781, 2020 11.
Article in English | MEDLINE | ID: mdl-32565389

ABSTRACT

INTRODUCTION: Anti-programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) antibody therapy is a standard treatment for advanced NSCLC, and PD-L1 immunohistochemistry is used as a predictive biomarker for therapeutic response. However, because not all patients with NSCLC with high PD-L1 respond, and some patients with low PD-L1 expression exhibit durable benefit, more accurate predictive biomarkers are needed. Circulating microRNA (miRNA) and miRNA packaged in extracellular vesicles (EVs) are believed to play a role in intercellular communication among immune cells and between immune cells and tumor cells and may represent a good source of mechanism-related biomarkers. METHODS: Pretreatment plasma of patients with advanced NSCLC treated with single-agent anti-PD-1 or anti-PD-L1 antibody was used in this study. Plasma EVs were isolated using size-exclusion chromatography. Whole plasma and EV-containing RNAs were extracted. The miRNA profile was analyzed with a next-generation sequencing platform. RESULTS: Samples from 14 responders (patients who exhibited partial response or stable disease ≥6 mo) and 15 nonresponders (patients who exhibited progressive disease as per Response Evaluation Criteria in Solid Tumors) were analyzed. In total, 32 miRNAs (p = 0.0030-0.0495) from whole plasma and seven EV-associated miRNAs (p = 0.041-0.0457) exhibited significant concentration differences between responders and nonresponders. The results of some of these circulating miRNAs were validated in a separate cohort with eight responders and 13 nonresponders. The tumor PD-L1 level was also assessed using immunohistochemistry for patients involved in both cohorts. CONCLUSIONS: Specific circulating miRNAs in whole plasma and plasma EVs are differentially expressed between responders and nonresponders and have potential as predictive biomarkers for anti-PD-1/PD-L1 treatment response.


Subject(s)
Circulating MicroRNA , Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Aged , Aged, 80 and over , B7-H1 Antigen , Biomarkers , Biomarkers, Tumor/genetics , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , MicroRNAs/genetics , Middle Aged , Programmed Cell Death 1 Receptor
14.
Cancer Epidemiol Biomarkers Prev ; 29(10): 1973-1982, 2020 10.
Article in English | MEDLINE | ID: mdl-32732250

ABSTRACT

BACKGROUND: We have verified a mass spectrometry (MS)-based targeted proteomics signature for the detection of malignant pleural mesothelioma (MPM) from the blood. METHODS: A seven-peptide biomarker MPM signature by targeted proteomics in serum was identified in a previous independent study. Here, we have verified the predictive accuracy of a reduced version of that signature, now composed of six-peptide biomarkers. We have applied liquid chromatography-selected reaction monitoring (LC-SRM), also known as multiple-reaction monitoring (MRM), for the investigation of 402 serum samples from 213 patients with MPM and 189 cancer-free asbestos-exposed donors from the United States, Australia, and Europe. RESULTS: Each of the biomarkers composing the signature was independently informative, with no apparent functional or physical relation to each other. The multiplexing possibility offered by MS proteomics allowed their integration into a single signature with a higher discriminating capacity than that of the single biomarkers alone. The strategy allowed in this way to increase their potential utility for clinical decisions. The signature discriminated patients with MPM and asbestos-exposed donors with AUC of 0.738. For early-stage MPM, AUC was 0.765. This signature was also prognostic, and Kaplan-Meier analysis showed a significant difference between high- and low-risk groups with an HR of 1.659 (95% CI, 1.075-2.562; P = 0.021). CONCLUSIONS: Targeted proteomics allowed the development of a multianalyte signature with diagnostic and prognostic potential for MPM from the blood. IMPACT: The proteomic signature represents an additional diagnostic approach for informing clinical decisions for patients at risk for MPM.


Subject(s)
Mass Spectrometry/methods , Mesothelioma, Malignant/genetics , Pleural Neoplasms/genetics , Proteomics/methods , Aged , Female , Humans , Male , Middle Aged
15.
Article in English | MEDLINE | ID: mdl-34778565

ABSTRACT

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.

16.
Cancer Res ; 67(12): 5587-93, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17575121

ABSTRACT

Evidence indicates that the induction of cyclooxygenase-2 (COX-2) and high prostaglandin E2 (PGE2) levels contribute to the pathogenesis of non-small-cell lung cancer (NSCLC). In addition to overproduction by COX-2, PGE2 concentrations also depend upon the levels of the PGE2 catabolic enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH). We find a dramatic down-regulation of PGDH protein in NSCLC cell lines and in resected human tumors when compared with matched normal lung. Affymetrix array analysis of 10 normal lung tissue samples and 49 resected lung tumors revealed a much lower expression of PGDH transcripts in all NSCLC histologic groups. In addition, treatment with the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) erlotinib increased the expression of 15-PGDH in a subset of NSCLC cell lines. This effect may be due in part to an inhibition of the extracellular signal-regulated kinase (ERK) pathway as treatment with mitogen-activated protein kinase kinase (MEK) inhibitor U0126 mimics the erlotinib results. We show by quantitative reverse transcription-PCR that the transcript levels of ZEB1 and Slug transcriptional repressors are dramatically reduced in a responsive cell line upon EGFR and MEK/ERK inhibition. In addition, the Slug protein, but not ZEB1, binds to the PGDH promoter and represses transcription. As these repressors function by recruiting histone deacetylases to promoters, it is likely that PGDH is repressed by an epigenetic mechanism involving histone deacetylation, resulting in increased PGE2 activity in tumors. This effect is reversible in a subset of NSCLC upon treatment with an EGFR TKI.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Lung Neoplasms/metabolism , Signal Transduction/physiology , Animals , Blotting, Western , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Epigenesis, Genetic , Extracellular Signal-Regulated MAP Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Homeodomain Proteins/drug effects , Homeodomain Proteins/metabolism , Humans , Oligonucleotide Array Sequence Analysis , Protein Kinase Inhibitors/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Snail Family Transcription Factors , Transcription Factors/drug effects , Transcription Factors/metabolism , Transcription, Genetic , Zinc Finger E-box-Binding Homeobox 1
17.
J Thorac Oncol ; 14(2): 223-236, 2019 02.
Article in English | MEDLINE | ID: mdl-30408569

ABSTRACT

INTRODUCTION: Notch receptor family dysregulation can be tumor promoting or suppressing depending on cellular context. Our studies shed light on the mechanistic differences that are responsible for NOTCH1's opposing roles in lung adenocarcinoma and lung squamous cell carcinoma. METHODS: We integrated transcriptional patient-derived datasets with gene co-expression analyses to elucidate mechanisms behind NOTCH1 function in subsets of NSCLC. Differential co-expression was examined using hierarchical clustering and principal component analysis. Enrichment analysis was used to examine pathways associated with the underlying transcriptional networks. These pathways were validated in vitro and in vivo. Endogenously epitope-tagged NOTCH1 was used to identify novel interacting proteins. RESULTS: NOTCH1 co-expressed genes in lung adenocarcinoma and squamous carcinoma were distinct and associated with either angiogenesis and immune system pathways or cell cycle control and mitosis pathways, respectively. Tissue culture and xenograft studies of lung adenocarcinoma and lung squamous models with NOTCH1 knockdown showed growth differences and opposing effects on these pathways. Differential NOTCH1 interacting proteins were identified as potential mediators of these differences. CONCLUSIONS: Recognition of the opposing role of NOTCH1 in lung cancer, downstream pathways, and interacting proteins in each context may help direct the development of rational NOTCH1 pathway-dependent targeted therapies for specific tumor subsets of NSCLC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Receptor, Notch1/genetics , Signal Transduction , A549 Cells , Adenocarcinoma/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Proliferation/genetics , Female , Gene Expression , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Immunity/genetics , Lung Neoplasms/metabolism , Mice , Mutation , Neoplasm Transplantation , Neovascularization, Pathologic/genetics , Receptor, Notch1/metabolism , Sequence Analysis, RNA
18.
J Thorac Oncol ; 14(6): 1061-1076, 2019 06.
Article in English | MEDLINE | ID: mdl-30825612

ABSTRACT

INTRODUCTION: Liver kinase B1 (LKB1), also called serine/threonine kinase 11 (STK11), is a tumor suppressor that functions as master regulator of cell growth, metabolism, survival, and polarity. Approximately 30% to 35% of patients with NSCLC possess inactivated liver kinase B1 gene (LKB1), and these patients respond poorly to anti-programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immunotherapy. Therefore, novel therapies targeting NSCLC with LKB1 loss are needed. METHODS: We used a new in silico signaling analysis method to identify the potential therapeutic targets and reposition drugs by integrating gene expression data with the Kyoto Encyclopedia of Genes and Genomes signaling pathways. LKB1 wild-type and LKB1-deficient NSCLC cell lines, including knockout clones generated by clustered regularly interspaced short pallindromic repeats-Cas9, were treated with inhibitors of mechanistic target of rapamycin kinase (mTOR) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and a dual inhibitor. RESULTS: In silico experiments showed that inhibition of both mTOR and PI3K can be synergistically effective in LKB1-deficient NSCLC. In vitro and in vivo experiments showed the synergistic effect of mTOR inhibition and PI3K inhibition in LKB1-mutant NSCLC cell lines. The sensitivity to dual inhibition of mTOR and PI3K is higher in LKB1-mutant cell lines than in wild-type cell lines. A higher compensatory increase in Akt phosphorylation after rapamycin treatment of LKB1-deficient cells than after rapamycin treatment of LKB1 wild-type cells is responsible for the synergistic effect of mTOR and PI3K inhibition. Dual inhibition of mTOR and PI3K resulted in a greater decrease in protein expression of cell cycle-regulating proteins in LKB1 knockout cells than in LKB1 wild-type cells. CONCLUSION: Dual molecular targeted therapy for mTOR and PI3K may be a promising therapeutic strategy in the specific population of patients with lung cancer with LKB1 loss.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , AMP-Activated Protein Kinase Kinases , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Random Allocation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 25(19): 5866-5877, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31431454

ABSTRACT

PURPOSE: Naturally occurring primary canine lung cancers share clinicopathologic features with human lung cancers in never-smokers, but the genetic underpinnings of canine lung cancer are unknown. We have charted the genomic landscape of canine lung cancer and performed functional characterization of novel, recurrent HER2 (ERBB2) mutations occurring in canine pulmonary adenocarcinoma (cPAC). EXPERIMENTAL DESIGN: We performed multiplatform genomic sequencing of 88 primary canine lung tumors or cell lines. Additionally, in cPAC cell lines, we performed functional characterization of HER2 signaling and evaluated mutation-dependent HER2 inhibitor drug dose-response. RESULTS: We discovered somatic, coding HER2 point mutations in 38% of cPACs (28/74), but none in adenosquamous (cPASC, 0/11) or squamous cell (cPSCC, 0/3) carcinomas. The majority (93%) of HER2 mutations were hotspot V659E transmembrane domain (TMD) mutations comparable to activating mutations at this same site in human cancer. Other HER2 mutations were located in the extracellular domain and TMD. HER2 V659E was detected in the plasma of 33% (2/6) of dogs with localized HER2 V659E tumors. HER2 V659E cPAC cell lines displayed constitutive phosphorylation of AKT and significantly higher sensitivity to the HER2 inhibitors lapatinib and neratinib relative to HER2-wild-type cell lines (IC50 < 200 nmol/L in HER2 V659E vs. IC50 > 2,500 nmol/L in HER2 WT). CONCLUSIONS: This study creates a foundation for molecular understanding of and drug development for canine lung cancer. These data also establish molecular contexts for comparative studies in dogs and humans of low mutation burden, never-smoker lung cancer, and mutant HER2 function and inhibition.


Subject(s)
Adenocarcinoma of Lung/veterinary , Dog Diseases/genetics , Lung Neoplasms/veterinary , Mutation , Receptor, ErbB-2/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Survival/drug effects , Dog Diseases/drug therapy , Dog Diseases/pathology , Dogs , Female , Lapatinib/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Signal Transduction , Tumor Cells, Cultured
20.
Mol Cell Biol ; 25(21): 9576-85, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16227606

ABSTRACT

Two members of the MTG/ETO family of transcriptional corepressors, MTG8 and MTG16, are disrupted by chromosomal translocations in up to 15% of acute myeloid leukemia cases. The third family member, MTGR1, was identified as a factor that associates with the t(8;21) fusion protein RUNX1-MTG8. We demonstrate that Mtgr1 associates with mSin3A, N-CoR, and histone deacetylase 3 and that when tethered to DNA, Mtgr1 represses transcription, suggesting that Mtgr1 also acts as a transcriptional corepressor. To define the biological function of Mtgr1, we created Mtgr1-null mice. These mice are proportionally smaller than their littermates during embryogenesis and throughout their life span but otherwise develop normally. However, these mice display a progressive reduction in the secretory epithelial cell lineage in the small intestine. This is not due to the loss of small intestinal progenitor cells expressing Gfi1, which is required for the formation of goblet and Paneth cells, implying that loss of Mtgr1 impairs the maturation of secretory cells in the small intestine.


Subject(s)
Cell Lineage/physiology , Intestine, Small/cytology , Phosphoproteins/biosynthesis , Repressor Proteins/biosynthesis , Transcription, Genetic , Animals , Cell Line , Chlorocebus aethiops , Enteroendocrine Cells/cytology , Goblet Cells/cytology , Histone Deacetylases/metabolism , Humans , Intestine, Small/metabolism , Mice , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 1 , Paneth Cells/cytology , Phosphoproteins/genetics , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex
SELECTION OF CITATIONS
SEARCH DETAIL