Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Sensors (Basel) ; 24(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38676127

ABSTRACT

The Internet of Things (IoT) will bring about the next industrial revolution in Industry 4.0. The communication aspect of IoT devices is one of the most critical factors in choosing the device that is suitable for use. Thus far, the IoT physical layer communication challenges have been met with various communications protocols that provide varying strengths and weaknesses. This paper summarizes the network architectures of some of the most popular IoT wireless communications protocols. It also presents a comparative analysis of some of the critical features, including power consumption, coverage, data rate, security, cost, and quality of service (QoS). This comparative study shows that low-power wide area network (LPWAN)-based IoT protocols (LoRa, Sigfox, NB-IoT, LTE-M) are more suitable for future industrial applications because of their energy efficiency, high coverage, and cost efficiency. In addition, the study also presents an Industrial Internet of Things (IIoT) application perspective on the suitability of LPWAN protocols in a particular scenario and addresses some open issues that need to be researched. Thus, this study can assist in deciding the most suitable IoT communication protocol for an industrial and production field.

2.
Angew Chem Int Ed Engl ; 62(32): e202306879, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37321976

ABSTRACT

Designing multi-resonance (MR) emitters that can simultaneously achieve narrowband emission and suppressed intermolecular interactions is challenging for realizing high color purity and stable blue organic light-emitting diodes (OLEDs). Herein, a sterically shielded yet extremely rigid emitter based on a triptycene-fused B,N core (Tp-DABNA) is proposed to address the issue. Tp-DABNA exhibits intense deep blue emissions with a narrow full width at half maximum (FWHM) and a high horizontal transition dipole ratio, superior to the well-known bulky emitter, t-DABNA. The rigid MR skeleton of Tp-DABNA suppresses structural relaxation in the excited state, with reduced contributions from the medium- and high-frequency vibrational modes to spectral broadening. The hyperfluorescence (HF) film composed of a sensitizer and Tp-DABNA shows reduced Dexter energy transfer compared to those of t-DABNA and DABNA-1. Notably, deep blue TADF-OLEDs with the Tp-DABNA emitter display higher external quantum efficiencies (EQEmax =24.8 %) and narrower FWHMs (≤26 nm) than t-DABNA-based OLEDs (EQEmax =19.8 %). The HF-OLEDs based on the Tp-DABNA emitter further demonstrate improved performance with an EQEmax of 28.7 % and mitigated efficiency roll-offs.

3.
J Mol Struct ; 1220: 128715, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32834109

ABSTRACT

Benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate (compound 1) is a bidentate and nitrogen-sulfur containing Schiff base, which has been synthesized by the condensation reaction of S-benzylndithiocarbazate and 2,4,5-trimethoxybenzaldehyde. The theoretical calculations of the mentioned compound have been carried out using the more popular density functional theory method, Becke-3-Parameter-Lee-Yang-Parr (B3LYP) in 6-31G+(d,p) basis set. The computational results of the compound were compared with the obtained experimental value. Moreover, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, molecular electrostatic potential, chemical reactivity parameters and natural bond orbital of the optimized structure have been evaluated at the same level of theory. Furthermore, the UV-Vis spectrum of the compound has been carried out for the better understanding of electronic absorption spectra with the help of the time-dependent density functional theory at room temperature. Besides, the molecular docking simulation of the mentioned molecule with target protein was also investigated. In addition, in silico studies were performed to predict absorption, distribution, metabolism, excretion and toxicity profiles of the designed compound. The results indicated that the theoretical data have well correlated with the observed values. The narrow frontier orbital gap indicated that the eventual charge transfer interaction occurs within the studied molecule and showed high chemical reactivity. The global reactivity values showed that the compound is soft molecule, electrophilic species and has strong binding ability with biomolecules. The molecular electrostatic potential structure indicated that the negative and positive potential sites are around electronegative atoms and hydrogen atoms of studied compound, respectively. The natural bond orbital data revealed that the compound contains 97.42% Lewis and 2.58% non-Lewis structure. The intra and inter-molecular charge transfers process occur within the studied compound. The studied compound showed more binding energy (-6.0 kcal/mol) with target protein than hydroxychloroquine (-5.6 kcal/mol). The absorption, distribution, metabolism, excretion and toxicity investigation predicted that the compound has good drug like character.

4.
Molecules ; 25(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147742

ABSTRACT

In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA-Ps scaffolds are very useful structures for wound dressing applications.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents , Escherichia coli/growth & development , Fibroblasts/metabolism , Materials Testing , Printing, Three-Dimensional , Propolis/chemistry , Staphylococcus aureus/growth & development , Tissue Scaffolds/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Humans
5.
Bioinformatics ; 34(24): 4141-4150, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29878078

ABSTRACT

Motivation: The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. Results: We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. Availability and implementation: The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Polymorphism, Single Nucleotide , Software , Algorithms , Computational Biology , Computer Simulation , Statistics as Topic
6.
Bioinformatics ; 33(6): 822-833, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28039167

ABSTRACT

Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically meaningful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, inheritance modes and mode coding direction into consideration. The simulation results show that SIPI has higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full interaction model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying SIPI to the prostate cancer PRACTICAL consortium data with approximately 21 000 patients, the four SNP pairs in EGFR-EGFR , EGFR-MMP16 and EGFR-CSF1 were found to be associated with prostate cancer aggressiveness with the exact or similar pattern in the discovery and validation sets. A similar match for external validation of SNP-SNP interaction studies is suggested. We demonstrated that SIPI not only searches for more meaningful interaction patterns but can also overcome the unstable nature of interaction patterns. Availability and Implementation: The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/ . Contact: hlin1@lsuhsc.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Epistasis, Genetic , Genetic Association Studies/methods , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Software , Statistics as Topic , ErbB Receptors/genetics , Genetic Predisposition to Disease , Humans , Male , Matrix Metalloproteinase 16/genetics , Models, Genetic , Prostatic Neoplasms/metabolism
8.
Int J Cancer ; 140(2): 322-328, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27741566

ABSTRACT

Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL consortium. Associations between genetic variants and prostate cancer case status, stage and grade were assessed by logistic regression and with all-cause and prostate cancer-specific mortality using Cox proportional hazards regression. There was no clear evidence that a genetic risk score combining rs4410790 and rs2472297 was associated with prostate cancer risk (OR per additional coffee increasing allele: 1.01, 95% CI: 0.98,1.03) or having high-grade compared to low-grade disease (OR: 1.01, 95% CI: 0.97,1.04). There was some evidence that the genetic risk score was associated with higher odds of having nonlocalised compared to localised stage disease (OR: 1.03, 95% CI: 1.01, 1.06). Amongst men with prostate cancer, there was no clear association between the genetic risk score and all-cause mortality (HR: 1.00, 95% CI: 0.97,1.04) or prostate cancer-specific mortality (HR: 1.03, 95% CI: 0.98,1.08). These results, which should have less bias from confounding than observational estimates, are not consistent with a substantial effect of coffee consumption on reducing prostate cancer incidence or progression.


Subject(s)
Coffee/adverse effects , Prostatic Neoplasms/etiology , Aged , Alleles , Disease Progression , Genetic Variation/genetics , Humans , Male , Mendelian Randomization Analysis/methods , Middle Aged , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Risk Factors
9.
Hum Mol Genet ; 24(19): 5589-602, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26025378

ABSTRACT

Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.


Subject(s)
Chromosome Mapping/methods , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , White People/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Male
10.
Hum Mol Genet ; 24(18): 5356-66, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26138067

ABSTRACT

Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes) using data on 51 725 cases and 62 035 controls. We then used an inverse-variance weighted average of the SNP-specific associations to estimate the association between a genetic score representing long TL and cancer risk. The long TL genetic score was significantly associated with increased risk of lung adenocarcinoma (P = 6.3 × 10(-15)), even after exclusion of a SNP residing in a known lung cancer susceptibility region (TERT-CLPTM1L) P = 6.6 × 10(-6)). Under Mendelian randomization assumptions, the association estimate [odds ratio (OR) = 2.78] is interpreted as the OR for lung adenocarcinoma corresponding to a 1000 bp increase in TL. The weighted TL SNP score was not associated with other cancer types or subtypes. Our finding that genetic determinants of long TL increase lung adenocarcinoma risk avoids issues with reverse causality and residual confounding that arise in observational studies of TL and disease risk. Under Mendelian randomization assumptions, our finding suggests that longer TL increases lung adenocarcinoma risk. However, caution regarding this causal interpretation is warranted in light of the potential issue of pleiotropy, and a more general interpretation is that SNPs influencing telomere biology are also implicated in lung adenocarcinoma risk.


Subject(s)
Genetic Predisposition to Disease , Mendelian Randomization Analysis , Neoplasms/epidemiology , Neoplasms/genetics , Telomere Homeostasis/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Association Studies , Genetic Variation , Humans , Male , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Risk
11.
Br J Cancer ; 117(5): 734-743, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28765617

ABSTRACT

BACKGROUND: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer. METHODS: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions. RESULTS: The results suggest that height is associated with high-grade prostate cancer risk. Men with height >180 cm are at a 22% increased risk as compared to men with height <173 cm (OR 1.22, 95% CI 1.01-1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group. CONCLUSIONS: There was no evidence of gene-environment interaction between height and the selected candidate SNPs.Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.


Subject(s)
Body Height/genetics , Prostatic Neoplasms/genetics , Aged , Case-Control Studies , Gene-Environment Interaction , Humans , Male , Middle Aged , Neoplasm Grading , Polymorphism, Single Nucleotide , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/pathology , Risk Assessment
12.
Int J Cancer ; 139(12): 2655-2670, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27459707

ABSTRACT

Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10-5 ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk.


Subject(s)
Genetic Variation , Neoplasms/epidemiology , Neoplasms/genetics , Telomere Homeostasis/genetics , Telomere/genetics , Alleles , Case-Control Studies , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Odds Ratio , Polymorphism, Single Nucleotide , Risk , Telomerase/genetics , White People
13.
Hum Mol Genet ; 22(24): 5056-64, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23900074

ABSTRACT

Mean telomere length (TL) in blood cells is heritable and has been reported to be associated with risks of several diseases, including cancer. We conducted a meta-analysis of three GWAS for TL (total n=2240) and selected 1629 variants for replication via the "iCOGS" custom genotyping array. All ∼200 000 iCOGS variants were analysed with TL, and those displaying associations in healthy controls (n = 15 065) were further tested in breast cancer cases (n = 11 024). We found a novel TL association (Ptrend < 4 × 10(-10)) at 3p14.4 close to PXK and evidence (Ptrend < 7 × 10(-7)) for TL loci at 6p22.1 (ZNF311) and 20q11.2 (BCL2L1). We additionally confirmed (Ptrend < 5 × 10(-14)) the previously reported loci at 3q26.2 (TERC), 5p15.3 (TERT) and 10q24.3 (OBFC1) and found supportive evidence (Ptrend < 5 × 10(-4)) for the published loci at 2p16.2 (ACYP2), 4q32.2 (NAF1) and 20q13.3 (RTEL1). SNPs tagging these loci explain TL differences of up to 731 bp (corresponding to 18% of total TL in healthy individuals), however, they display little direct evidence for association with breast, ovarian or prostate cancer risks.


Subject(s)
Genetic Loci , Genome-Wide Association Study , Neoplasms/genetics , Telomere Homeostasis/genetics , Telomere/genetics , Case-Control Studies , Chromosome Mapping , Female , Genetic Predisposition to Disease , Humans , Male , Neoplasms/metabolism , Polymorphism, Single Nucleotide , Risk , Telomere/metabolism
14.
Hum Mol Genet ; 22(2): 408-15, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23065704

ABSTRACT

Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS including 5953 cases of aggressive PrCa and 11 463 controls (men without PrCa). We computed association tests for approximately 2.6 million SNPs and followed up the most significant SNPs by genotyping 49 121 samples in 29 studies through the international PRACTICAL and BPC3 consortia. We not only confirmed the association of a PrCa susceptibility locus, rs11672691 on chromosome 19, but also showed an association with aggressive PrCa [odds ratio = 1.12 (95% confidence interval 1.03-1.21), P = 1.4 × 10(-8)]. This report describes a genetic variant which is associated with aggressive PrCa, which is a type of PrCa associated with a poorer prognosis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Prostatic Neoplasms/genetics , Quantitative Trait Loci , Case-Control Studies , Disease Progression , Humans , Male , Odds Ratio , Polymorphism, Single Nucleotide , Reproducibility of Results
15.
Prostate ; 75(13): 1467-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26177737

ABSTRACT

BACKGROUND: Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS: We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS: The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS: Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction.


Subject(s)
Genetic Markers , Genetic Predisposition to Disease , Prostatic Neoplasms/genetics , Genetic Variation , Humans , Linkage Disequilibrium , Male , Risk Factors
16.
Genet Med ; 17(10): 789-95, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25569441

ABSTRACT

PURPOSE: This study aimed to quantify the probability of overdiagnosis of prostate cancer by polygenic risk. METHODS: We calculated the polygenic risk score based on 66 known prostate cancer susceptibility variants for 17,012 men aged 50-69 years (9,404 men identified with prostate cancer and 7,608 with no cancer) derived from three UK-based ongoing studies. We derived the probabilities of overdiagnosis by quartiles of polygenic risk considering that the observed prevalence of screen-detected prostate cancer is a combination of underlying incidence, mean sojourn time (MST), test sensitivity, and overdiagnosis. RESULTS: Polygenic risk quartiles 1 to 4 comprised 9, 18, 25, and 48% of the cases, respectively. For a prostate-specific antigen test sensitivity of 80% and MST of 9 years, 43, 30, 25, and 19% of the prevalent screen-detected cancers in quartiles 1 to 4, respectively, were likely to be overdiagnosed cancers. Overdiagnosis decreased with increasing polygenic risk, with 56% decrease between the lowest and the highest polygenic risk quartiles. CONCLUSION: Targeting screening to men at higher polygenic risk could reduce the problem of overdiagnosis and lead to a better benefit-to-harm balance in screening for prostate cancer.


Subject(s)
Early Detection of Cancer , Genetic Testing , Medical Overuse , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Aged , Algorithms , Biomarkers, Tumor , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Genetic Loci , Genetic Testing/methods , Genetic Testing/standards , Humans , Male , Middle Aged , Models, Genetic , Models, Statistical , Neoplasm Grading , Neoplasm Staging , Prostatic Neoplasms/epidemiology , Risk , Sensitivity and Specificity , United Kingdom/epidemiology
17.
PLoS One ; 19(6): e0303065, 2024.
Article in English | MEDLINE | ID: mdl-38843276

ABSTRACT

The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Musa , Phylogeny , Plant Proteins , Musa/genetics , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Cureus ; 15(3): e35874, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37033542

ABSTRACT

Gemcitabine-induced hemolytic uremic syndrome is an often-missed condition. We present a case outlining the successful management of a patient with metastatic cholangiocarcinoma treated with gemcitabine who subsequently developed hemolytic uremic syndrome. Early recognition and stopping gemcitabine are essential in this patient population. Complement inhibitors have been used, and our patient improved on eculizumab therapy.

19.
Environ Sci Pollut Res Int ; 30(36): 85639-85654, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392300

ABSTRACT

Microplastics (MPs) are pervasive in aquatic environments, but inland waterbodies (rivers and floodplains) have received much less attention. The present study assesses the incidence of MPs in the gastrointestinal tracts of five commercially important edible fish species-two column feeders (n = 30) and three benthivores (n = 45) from upstream, midstream, and downstream of the Old Brahmaputra river in north-central Bangladesh. MPs were detected in 58.93% of fish, with the highest level in freshwater eel, Mastacembelus armatus (10.31 ± 0.75/fish). Fibers (49.03%) and pellets (28.02%) were the most frequent MPs. Nearly 72% MPs were smaller than 1 mm, and 50.97% were black. FTIR analysis showed 59% polyethelene (PE), followed by polyamide (40%) and unidentified (1%). MP ingestion was linked to fish size and weight, and a high incidence was recorded in the downstream river. Two omnivorous benthic fish ingest more MPs than others. The results corroborate the presence of MPs in the inland river and fish fauna and augment our understanding of heterogeneous MP uptake by fish.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics/analysis , Prevalence , Bangladesh , Water Pollutants, Chemical/analysis , Environmental Monitoring , Fishes
20.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110951

ABSTRACT

Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) are a promising material for red-light-emitting diodes (LEDs) due to their excellent color purity and high luminous efficiency. However, small-sized CsPbI3 colloidal NCs, such as nanocubes, used in LEDs suffer from confinement effects, negatively impacting their photoluminescence quantum yield (PLQY) and overall efficiency. Here, we introduced YCl3 into the CsPbI3 perovskite, which formed anisotropic, one-dimensional (1D) nanorods. This was achieved by taking advantage of the difference in bond energies among iodide and chloride ions, which caused YCl3 to promote the anisotropic growth of CsPbI3 NCs. The addition of YCl3 significantly improved the PLQY by passivating nonradiative recombination rates. The resulting YCl3-substituted CsPbI3 nanorods were applied to the emissive layer in LEDs, and we achieved an external quantum efficiency of ~3.16%, which is 1.86-fold higher than the pristine CsPbI3 NCs (1.69%) based LED. Notably, the ratio of horizontal transition dipole moments (TDMs) in the anisotropic YCl3:CsPbI3 nanorods was found to be 75%, which is higher than the isotropically-oriented TDMs in CsPbI3 nanocrystals (67%). This increased the TDM ratio and led to higher light outcoupling efficiency in nanorod-based LEDs. Overall, the results suggest that YCl3-substituted CsPbI3 nanorods could be promising for achieving high-performance perovskite LEDs.

SELECTION OF CITATIONS
SEARCH DETAIL