Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Org Biomol Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984438

ABSTRACT

Three new α-tocopherol thiophene derivatives were efficiently synthesized, characterized and used for the first time as chain-breaking antioxidants for the inhibition of the autoxidation of reference oxidizable substrates. The rate constant of the reaction with alkylperoxyl (ROO˙) radicals and the stoichiometry of radical trapping (n) for the thiophene-tocopherol compounds were determined by measuring the oxygen consumption during the autoxidation of styrene or isopropylbenzene, using a differential pressure transducer. The measurement of the reaction with ROO˙ radicals in an apolar solvent at 30 °C showed inhibition rate constants (kinh) in the order of 104 M-1 s-1. To rationalise the kinetic results, the effect of the thiophene ring on the H-atom donation by O-H groups of the functionalized tocopherols was investigated by theoretical calculations. The importance of noncovalent interactions (including an unusual O˙⋯S bond) for the stability of the conformers has been shown, and the O-H bond dissociation enthalpy (BDE(OH)) of these derivatives was determined. Finally, the photophysical properties of these new compounds were investigated to understand if the addition of thiophene groups changes the absorption or emission spectra of the tocopherol skeleton for their possible application as luminescent molecular probes.

2.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677790

ABSTRACT

Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized. Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives are more or less effective than the reference natural compound. The rate constant of the reaction with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol. Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of 1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances of these new bisphenol neolignans.


Subject(s)
Antioxidants , Lignans , Antioxidants/pharmacology , Antioxidants/chemistry , Lignans/pharmacology , Lignans/chemistry , Phenols/pharmacology , Biphenyl Compounds/chemistry , Free Radical Scavengers/pharmacology , Free Radicals
3.
Molecules ; 28(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37764505

ABSTRACT

γ-terpinene, α-terpinene, p-cymene, and myrcene are monoterpenes found in many essential oils extracted from a variety of plants and spices. Myrcene also occurs naturally in plants such as hops, cannabis, lemongrass, and verbena and is used as a flavoring agent in food and beverage manufacturing. In this research, the biological efficacy of γ-terpinene, α-terpinene, p-cymene, and myrcene was studied in human cell lines (HeLa, SH-SY5Y, and HDFa). Cytotoxicity, cell proliferation, cell migration, and morphology assays were performed to obtain detailed information on the anticancer properties. Our results show that myrcene has potential biological activity, especially in HeLa cells. In this cell line, it leads to an arrest of proliferation, a decrease in motility and morphological changes with loss of sphericity and thickness, and DNA damage. In addition, the interaction of γ-terpinene, α-terpinene, p-terpinene, and myrcene with calf thymus DNA (ct-DNA) was studied by UV-visible spectrophotometry. DNA binding experiments show that only myrcene can interact with DNA with an apparent dissociation constant (Kd) of 29 × 10-6 M.

4.
Chemphyschem ; 22(14): 1446-1454, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34033195

ABSTRACT

Helical shaped fused bis-phenothiazines 1-9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+ ) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5-9 with peroxyl radicals (ROO. ) occurs with a 'classical' HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1-4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+ . Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH ), and kinetic constants (kinh ) of the reactions with ROO. species of helicenes 1-9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.

5.
Molecules ; 26(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34500670

ABSTRACT

Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M-1s-1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M-1s-1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.


Subject(s)
Antioxidants/chemistry , Oils, Volatile/chemistry , Phenols/chemistry , Cinnamomum zeylanicum/chemistry , Gas Chromatography-Mass Spectrometry , Origanum/chemistry , Peroxides/chemistry
6.
Angew Chem Int Ed Engl ; 60(28): 15220-15224, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33876878

ABSTRACT

Melanins are stable and non-toxic biomaterials with a great potential as chemopreventive agents for diseases connected with oxidative stress, but the mechanism of their antioxidant action is unclear. Herein, we show that polydopamine (PDA), a well-known synthetic melanin, becomes an excellent trap for alkylperoxyl radicals (ROO. , typically formed during autoxidation of lipid substrates) in the presence of hydroperoxyl radicals (HOO. ). The key reaction explaining this peculiar antioxidant activity is the reduction of the ortho-quinone moieties present in PDA by the reaction with HOO. . This reaction occurs via a H-atom transfer mechanism, as demonstrated by the large kinetic solvent effect of the reaction of a model quinone (3,5-di-tert-butyl-1,2-benzoquinone) with HOO. (k=1.5×107 and 1.1×105  M-1 s-1 in PhCl and MeCN). The chemistry disclosed herein is an important step to rationalize the redox-mediated bioactivity of melanins and of quinones.


Subject(s)
Antioxidants/chemistry , Hydrogen/chemistry , Indoles/chemistry , Peroxides/chemistry , Polymers/chemistry , Quinones/chemistry , Free Radicals/chemistry , Molecular Structure
7.
J Org Chem ; 85(17): 11440-11448, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32842740

ABSTRACT

The mechanism of the acid-dependent interring dehydrogenation in the conversion of the single-bonded 3-phenyl-2H-1,4-benzothiazine dimer 2 to the Δ2,2'-bi(2H-1,4-benzothiazine) scaffold of red hair pigments is disclosed herein. Integrated chemical oxidation and oxygen consumption experiments, coupled with electron paramagnetic resonance (EPR) analyses and DFT calculations, allowed the identification of a key diprotonated free-radical intermediate, which was implicated in a remarkable oxygen-dependent chain process via peroxyl radical formation and evolution to give the Δ2,2'-bi(2H-1,4-benzothiazine) dimer 3 by interring dehydrogenation. The critical requirement for strongly acidic conditions was rationalized for the first time by the differential evolution channels of isomeric peroxyl radical intermediates at the 2- versus 3-positions. These results offer for the first time a rationale to expand the synthetic scope of the double interring dehydrogenation pathway for the preparation of novel symmetric double-bond bridged captodative heterocycles.

8.
Chemistry ; 25(38): 9108-9116, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31017702

ABSTRACT

Symmetrical ditocopheryl disulfides (Toc)2 S2 and symmetrical and unsymmetrical ditocopheryl sulfides (Toc)2 S were simply prepared under remarkably mild conditions with complete control of the regiochemistry by using δ-, γ-, and ß-tocopheryl-N-thiophthalimides (Toc-NSPht) as common starting materials. The roles of sulfur atom(s), H-bond and aryl ring substitution pattern on the antioxidant profile of these new compounds, which were assembled by linking together two tocopheryl units, are also discussed.

9.
J Org Chem ; 84(21): 13655-13664, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31536337

ABSTRACT

Pro-aromatic and volatile 1-methyl-1,4-cyclohexadiene (MeCHD) was used for the first time as a valid H-atom source in an innovative method to reduce ortho or para quinones to obtain the corresponding catechols and hydroquinones in good to excellent yields. Notably, the excess of MeCHD and the toluene formed as the oxidation product can be easily removed by evaporation. In some cases, trifluoroacetic acid as a catalyst was added to obtain the desired products. The reaction proceeds in air and under mild conditions, without metal catalysts and sulfur derivatives, resulting in an excellent and competitive method to reduce quinones. The mechanism is attributed to a radical reaction triggered by a hydrogen atom transfer from MeCHD to quinones, or, in the presence of trifluoroacetic acid, to a hydride transfer process.

10.
J Am Chem Soc ; 140(32): 10354-10362, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30022659

ABSTRACT

We report a novel coantioxidant system based on TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) that, in biologically relevant model systems, rapidly converts chain-carrying alkylperoxyl radicals to HOO·. Extremely efficient quenching of HOO· by TEMPO blocks the oxidative chain. Rate constants in chlorobenzene were measured to be 1.1 × 109 M-1 s-1 for the reductive reaction TEMPO + HOO· → TEMPOH + O2 and 5.0 × 107 M-1 s-1 for the oxidative reaction TEMPOH + HOO· → TEMPO + H2O2. These rate constants are significantly higher than that associated with the reaction of HOO· with α-tocopherol, Nature's best lipid soluble antioxidant ( k = 1.6 × 106 M-1 s-1). These data show that in the presence of ROO·-to-HOO· chain-transfer agents, which are common in lipophilic environments, the TEMPO/TEMPOH couple protects organic molecules from oxidation by establishing an efficient reductive catalytic cycle. This catalytic cycle provides a new understanding of the efficacy of the antioxidant capability of TEMPO in nonaqueous systems and its potential to act as a chemoprotective against radical damage.


Subject(s)
Antioxidants/chemistry , Catalysis , Computer Simulation , Cyclic N-Oxides/chemistry , Free Radicals , Hydroxylamine , Models, Molecular , Molecular Structure , Oxidation-Reduction , Spectrum Analysis/methods
11.
Chemistry ; 24(36): 9113-9119, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29689123

ABSTRACT

Metal nanoparticles are reported to be toxic due to the generation of free radicals at their surface. Relatively inert thiol-capped gold nanoparticles (AuNPs) have been reported to induce radical formation in the presence of hydroperoxides, which would conflict with their potential use as inert scaffolds for the design of novel nano-antioxidants. With the aim of clarifying this aspect, we investigated the pro-oxidant activity of dodecanethiol-capped AuNPs (∼5 nm diameter), prepared through the Brust-Schiffrin synthesis, by oxygen-uptake kinetic studies. The pro-oxidant activity was found to be proportional to the impurities of the transfer agent tetraoctylammonium bromide (TOAB) left from the synthesis and decreased on repeated washing of the nanoparticles. Under identical settings similar batches of AuNP (∼9 nm diameter) prepared through the Ulman method without onium salts showed no pro-oxidant behavior. The alternative onium phase-transfer agents Oct4 NBF4 (Oct=octyl), Hex4 NBF4 (Hex=hexyl), and Hex4 NPF6 were comparatively investigated and showed lower pro-oxidant activity depending on the counterion (Br- >PF6- >BF4- ).

12.
Chemistry ; 23(22): 5299-5306, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28233922

ABSTRACT

Phenols with intramolecular hydrogen bond between a pendant base and the phenolic OH group react differently in polar and non-polar environments with electron/proton acceptors. This was demonstrated by using time resolved chemically induced dynamic nuclear polarization (TR CIDNP) and theoretical calculations. In benzene, those phenols undergo a concerted electron-proton transfer (EPT) that yields neutral ketyl and phenoxyl radicals. In polar acetonitrile, the reaction mechanism turns into an electron transfer from the phenol to the triplet ketone, accompanied by the shift of a proton from the phenolic OH group to the nitrogen atom of the pendant base to form a distonic radical cation. This behavior is similar to that of tyrosine H-bonded to basic residues in some radical enzymes. This solvent-induced mechanism switch in proton-coupled electron transfers is important in different biological systems, in which the same metabolites and intermediates can react differently depending on the specific local environments.

13.
Org Biomol Chem ; 15(29): 6177-6184, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28695220

ABSTRACT

Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (kinh) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the kinh value, being 2.4 × 105 M-1 s-1 and 3.3 × 105 M-1 s-1 for the mono and the dihydroxy derivatives respectively (kinh of magnolol is 6.1 × 104 M-1 s-1). The di-methoxylated derivative is less reactive than magnolol (kinh = 1.1 × 104 M-1 s-1), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 104 M-1 s-1). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.


Subject(s)
Antioxidants/chemistry , Biphenyl Compounds/chemistry , Lignans/chemistry , Antioxidants/chemical synthesis , Biphenyl Compounds/chemical synthesis , Hydrogen Bonding , Hydroxylation , Lignans/chemical synthesis , Molecular Structure , Peroxides/antagonists & inhibitors , Peroxides/chemistry , Quantum Theory
14.
J Am Chem Soc ; 138(16): 5290-8, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27023326

ABSTRACT

Persistent dialkylnitroxides (e.g., 2,2,6,6-tetramethylpiperidin-1-oxyl, TEMPO) play a central role in the activity of hindered amine light stabilizers (HALS)-additives that inhibit the (photo)oxidative degradation of consumer and industrial products. The accepted mechanism of HALS comprises a catalytic cycle involving the rapid combination of a nitroxide with an alkyl radical to yield an alkoxyamine that subsequently reacts with a peroxyl radical to eventually re-form the nitroxide. Herein, we offer evidence in favor of an alternative reaction mechanism involving the acid-catalyzed reaction of a nitroxide with a peroxyl radical to yield an oxoammonium ion followed by electron transfer from an alkyl radical to the oxoammonium ion to re-form the nitroxide. In preliminary work, we showed that TEMPO reacts with peroxyl radicals at diffusion-controlled rates in the presence of acids. Now, we show that TEMPO can be regenerated from its oxoammonium ion by reaction with alkyl radicals. We have determined that this reaction, which has been proposed to be a key step in TEMPO-catalyzed synthetic transformations, occurs with k ∼ 1-3 × 10(10) M(-1) s(-1), thereby enabling it to compete with O2 for alkyl radicals. The addition of weak acids facilitates this reaction, whereas the addition of strong acids slows it by enabling back electron transfer. The chemistry is shown to occur in hydrocarbon autoxidations at elevated temperatures without added acid due to the in situ formation of carboxylic acids, accounting for the long-known catalytic radical-trapping antioxidant activity of TEMPO that prompted the development of HALS.

15.
Chemistry ; 22(46): 16441-16445, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27709712

ABSTRACT

Hydroperoxyl (HOO. ) and alkylperoxyl (ROO. ) radicals show a different behavior in H-atom-transfer processes. Both radicals react with an analogue of α-tocopherol (TOH), but HOO. , unlike ROO. , is able to regenerate TOH by a fast H-atom transfer: TO. +HOO. →TOH+O2 . The kinetic solvent effect on the H-atom transfer from TOH to HOO. is much stronger than that observed for ROO. because noncovalent interactions with polar solvents (Solv⋅⋅⋅HOO. ) destabilize the transition state.

16.
Chemistry ; 22(23): 7924-34, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27111024

ABSTRACT

The reactions of alkylperoxyl radicals with phenols have remained difficult to investigate in water. We describe herein a simple and reliable method based on the inhibited autoxidation of water/THF mixtures, which we calibrated against pulse radiolysis. With this method we measured the rate constants kinh for the reactions of 2-tetrahydrofuranylperoxyl radicals with reference compounds: urate, ascorbate, ferrocenes, 2,2,5,7,8-pentamethyl-6-chromanol, Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-acetic acid, 2,6-di-tert-butyl-4-methoxyphenol, 4-methoxyphenol, catechol and 3,5-di-tert-butylcatechol. The role of pH was investigated: the value of kinh for Trolox and 4-methoxyphenol increased 11- and 50-fold from pH 2.1 to 12, respectively, which indicate the occurrence of a SPLET-like mechanism. H(D) kinetic isotope effects combined with pH and solvent effects suggest that different types of proton-coupled electron transfer (PCET) mechanisms are involved in water: less electron-rich phenols react at low pH by concerted electron-proton transfer (EPT) to the peroxyl radical, whereas more electron-rich phenols and phenoxide anions react by multi-site EPT in which water acts as proton relay.

17.
Chemistry ; 21(46): 16639-45, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26440303

ABSTRACT

The transformation of simple phenols with limited antioxidant activity into potent chain-breaking antioxidants was achieved by a three-step protocol, consisting of the conversion of phenols into 1,4-benzo[b]oxathiines followed by an unprecedented acid-promoted transposition to o-hydroxydihydrobenzo[b]thiophenes, or dihydrobenzo[de]thiochromenes, starting from phenols or naphthols, respectively. These derivatives, bearing a benzo-fused heterocycle with a sulfide sulfur ortho to the phenolic OH, have a rate constant of reaction with alkylperoxyl radicals (kinh ) comparable to that of α-tocopherol. A solid rationale for the transposition mechanism as well as for the structure-antioxidant activity relationship is presented.

18.
J Org Chem ; 80(21): 10651-9, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26447942

ABSTRACT

Magnolol and honokiol, the bioactive phytochemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kinh of 6.1 × 10(4) M(-1) s(-1) in chlorobenzene and 6.0 × 10(3) M(-1) s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (kinh = 3.8 × 10(4) M(-1) s(-1)) and four peroxyl radicals in acetonitrile (kinh = 9.5 × 10(3) M(-1) s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl π-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M(-1) s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.


Subject(s)
Acetonitriles/chemistry , Anisoles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Lignans/chemistry , Lignans/pharmacology , Superoxides/chemistry , Hydrogen Bonding , Kinetics , Molecular Structure , Oxidation-Reduction , Quantum Theory , Spectroscopy, Fourier Transform Infrared
19.
Org Biomol Chem ; 13(20): 5757-64, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25902184

ABSTRACT

The structural modification of the resveratrol scaffold is currently an active issue in the quest for more potent and versatile antioxidant derivatives for biomedical applications. Disclosed herein is an expedient and efficient entry to a novel class of resveratrol derivatives featuring an unprecedented 2-phenylbenzoselenophene skeleton. The new compounds were obtained in good yields by direct selenenylation of resveratrol with Se(0) and SO2Cl2 in dry THF. Varying the [Se : SO2Cl2 : resveratrol] ratio resulted in the formation of the parent benzoselenophene (1) and/or mono (2) and/or dichloro (3) benzoselenophene derivatives. All the benzoselenophene derivatives proved to be more efficient than resveratrol in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays, with 1 showing an activity nearly comparable to that of Trolox. 1-3 also proved to be more efficient inhibitors than the parent resveratrol in kinetic experiments of styrene autoxidation. DFT calculations of the O-H bond dissociation enthalpy (BDE) revealed that the introduction of the Se-atom causes a significant decrease of the BDE of 3-OH and 5-OH, with just a small increase of the 4'-OH BDE. Compounds 1-3 showed no cytotoxicity at 5 µM concentrations on human keratinocyte (HaCaT) and intestinal (CaCo-2) cell lines.


Subject(s)
Antioxidants/pharmacology , Keratinocytes/drug effects , Organometallic Compounds/pharmacology , Selenium Compounds/pharmacology , Stilbenes/chemistry , Antioxidants/chemistry , Caco-2 Cells , Cell Proliferation/drug effects , Cells, Cultured , Humans , Keratinocytes/cytology , Kinetics , Organometallic Compounds/chemistry , Resveratrol , Selenium Compounds/chemistry , Thermodynamics
20.
J Am Chem Soc ; 136(4): 1570-8, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24383573

ABSTRACT

The redox chemistry of selenenic acids has been explored for the first time using a persistent selenenic acid, 9-triptyceneselenenic acid (RSeOH), and the results have been compared with those we recently obtained with its lighter chalcogen analogue, 9-triptycenesulfenic acid (RSOH). Specifically, the selenenyl radical was characterized by EPR spectroscopy and equilibrated with a phenoxyl radical of known stability in order to determine the O-H bond dissociation enthalpy of RSeOH (80.9 ± 0.8 kcal/mol): ca. 9 kcal/mol stronger than in RSOH. Kinetic measurements of the reactions of RSeOH with peroxyl radicals demonstrate that it readily undergoes H-atom transfer reactions (e.g., k = 1.7 × 10(5) M(-1) s(-1) in PhCl), which are subject to kinetic solvent effects and kinetic isotope effects similar to RSOH and other good H-atom donors. Interestingly, the rate constants for these reactions are only 18- and 5-fold smaller than those measured for RSOH in PhCl and CH3CN, respectively, despite being 9 kcal/mol less exothermic for RSeOH. IR spectroscopic studies demonstrate that RSeOH is less H-bond acidic than RSOH, accounting for these solvent effects and enabling estimates of the pKas in RSeOH and RSOH of ca. 15 and 10, respectively. Calculations suggest that the TS structures for these reactions have significant charge transfer between the chalcogen atom and the internal oxygen atom of the peroxyl radical, which is nominally better for the more polarizable selenenic acid. The higher than expected reactivity of RSeOH toward peroxyl radicals is the strongest experimental evidence to date for charge transfer/secondary orbital interactions in the reactions of peroxyl radicals with good H-atom donors.

SELECTION OF CITATIONS
SEARCH DETAIL