Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Liver Int ; 44(2): 472-482, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010919

ABSTRACT

BACKGROUND AND AIMS: The transjugular intrahepatic portosystemic shunt has controversial survival benefits; thus, patient screening should be performed preoperatively. In this study, we aimed to develop a model to predict post-transjugular intrahepatic portosystemic shunt mortality to aid clinical decision making. METHODS: A total of 811 patients undergoing transjugular intrahepatic portosystemic shunt from five hospitals were divided into the training and external validation data sets. A modified prediction model of post-transjugular intrahepatic portosystemic shunt mortality (ModelMT ) was built after performing logistic regression. To verify the improved performance of ModelMT , we compared it with seven previous models, both in discrimination and calibration. Furthermore, patients were stratified into low-, medium-, high- and extremely high-risk subgroups. RESULTS: ModelMT demonstrated a satisfying predictive efficiency in both discrimination and calibration, with an area under the curve of .875 in the training set and .852 in the validation set. Compared to previous models (ALBI, BILI-PLT, MELD-Na, MOTS, FIPS, MELD, CLIF-C AD), ModelMT showed superior performance in discrimination by statistical difference in the Delong test, net reclassification improvement and integrated discrimination improvement (all p < .050). Similar results were observed in calibration. Low-, medium-, high- and extremely high-risk groups were defined by scores of ≤160, 160-180, 180-200 and >200, respectively. To facilitate future clinical application, we also built an applet for ModelMT . CONCLUSIONS: We successfully developed a predictive model with improved performance to assist in decision making for transjugular intrahepatic portosystemic shunt according to survival benefits.


Subject(s)
Portasystemic Shunt, Transjugular Intrahepatic , Humans , Retrospective Studies , Liver Cirrhosis/complications , Liver Cirrhosis/surgery , Treatment Outcome
2.
Int J Clin Oncol ; 27(6): 1013-1024, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35482171

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths in the world. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. For lack of conveniently sensitive and specific biomarkers, the majority of patients are in the late stage at initial diagnosis. Long non-coding RNAs (LncRNAs), a novel type of non-coding RNA, have recently been recognized as critical factors in tumor initiation and progression, but the role of exosomal LncRNAs has not been thoroughly excavated in NSCLC yet. METHODS: We isolated exosomes from the serum of patients with NSCLC and healthy controls. Exosome RNA deep sequencing was subsequently performed to detect differentially expressed exosomal LncRNAs. qRT-PCR assay was then utilized to validate dysregulated LncRNAs in both testing and multicentric validation cohort. Receiver operating characteristic (ROC) curve was used to detect the diagnostic capability of exosomal biomarkers. Furthermore, Kaplan-Meier analysis was applied to evaluate the prognostic values of these molecules. RESULTS: On the basis of analysis, we found that novel exosomal LncRNA RP5-977B1 exhibited higher levels in NSCLC than that in the healthy controls. The area under the curve (AUC) value of exosomal RP5-977B1 was 0.8899 and superior to conventional biomarkers CEA and CYFRA21-1 both in testing and multicentric validation cohort. Interestingly, the diagnostic capability of exosomal RP5-977B1 was also validated in early-stage patients with NSCLC. Furthermore, high expression of exosomal RP5-977B1was closely related with worse prognosis in NSCLC (P = 0.036). CONCLUSIONS: Our results suggested that exosomal RP5-977B1 might serve as a novel "liquid biopsy" diagnostic and prognostic biomarker to monitor NSCLC and improve possible therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Antigens, Neoplasm , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Keratin-19 , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Prognosis , RNA, Long Noncoding/genetics
3.
J Cell Mol Med ; 25(10): 4753-4764, 2021 05.
Article in English | MEDLINE | ID: mdl-33759345

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic worldwide. Long non-coding RNAs (lncRNAs) are a subclass of endogenous, non-protein-coding RNA, which lacks an open reading frame and is more than 200 nucleotides in length. However, the functions for lncRNAs in COVID-19 have not been unravelled. The present study aimed at identifying the related lncRNAs based on RNA sequencing of peripheral blood mononuclear cells from patients with SARS-CoV-2 infection as well as health individuals. Overall, 17 severe, 12 non-severe patients and 10 healthy controls were enrolled in this study. Firstly, we reported some altered lncRNAs between severe, non-severe COVID-19 patients and healthy controls. Next, we developed a 7-lncRNA panel with a good differential ability between severe and non-severe COVID-19 patients using least absolute shrinkage and selection operator regression. Finally, we observed that COVID-19 is a heterogeneous disease among which severe COVID-19 patients have two subtypes with similar risk score and immune score based on lncRNA panel using iCluster algorithm. As the roles of lncRNAs in COVID-19 have not yet been fully identified and understood, our analysis should provide valuable resource and information for the future studies.


Subject(s)
COVID-19/diagnosis , RNA, Long Noncoding , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , RNA, Long Noncoding/blood , RNA, Long Noncoding/physiology , Risk Assessment , Severity of Illness Index
4.
J Clin Lab Anal ; 34(9): e23411, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32594577

ABSTRACT

BACKGROUND: The detection of serum antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as a new tool for the coronavirus disease 2019 (COVID-19) diagnosis. Since many coronaviruses are sensitive to heat, heating inactivation of samples at 56°C prior to testing is considered a possible method to reduce the risk of transmission, but the effect of heating on the measurement of SARS-CoV-2 antibodies is still unclear. METHODS: By comparing the levels of SARS-CoV-2 antibodies before and after heat inactivation of serum at 56°C for 30 minutes using a quantitative fluorescence immunochromatographic assay RESULTS: We showed that heat inactivation significantly interferes with the levels of antibodies to SARS-CoV-2. The IgM levels of all the 34 serum samples (100%) from COVID-19 patients decreased by an average level of 53.56%. The IgG levels were decreased in 22 of 34 samples (64.71%) by an average level of 49.54%. Similar changes can also be observed in the non-COVID-19 disease group (n = 9). Of note, 44.12% of the detected IgM levels were dropped below the cutoff value after heating, suggesting heat inactivation can lead to false-negative results of these samples. CONCLUSION: Our results indicate that heat inactivation of serum at 56°C for 30 minutes interferes with the immunoanalysis of antibodies to SARS-CoV-2. Heat inactivation prior to immunoanalysis is not recommended, and the possibility of false-negative results should be considered if the sample was pre-inactivated by heating.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/blood , Coronavirus Infections/immunology , Hot Temperature , Immunoassay/methods , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Serum/immunology , COVID-19 , Coronavirus Infections/virology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
5.
Proteomics ; 19(12): e1800160, 2019 06.
Article in English | MEDLINE | ID: mdl-30950185

ABSTRACT

Extracellular vesicles (EVs) mediate intercellular communication via transferring proteins and other biological molecules and have been recently investigated as biomarkers of disease. Sensitive and specific biomarkers are required for lung cancer diagnosis and prognosis. The present study screens for abnormal EV proteins in non-small cell lung cancer (NSCLC) using a quantitative proteomics strategy involving LC-MS/MS to identify ideal biomarkers for NSCLC diagnosis. EVs are enriched from the sera of early and advanced NSCLC patients and healthy controls and from cell culture supernatants of lung adenocarcinoma and bronchial epithelial cell lines. In the sera and supernatants, 279 and 632 differentially expressed proteins, respectively, are associated with signaling pathways including extracellular membrane-receptor interaction, focal adhesion, and regulation of the actin cytoskeleton. Thirty-two EV proteins are identified at the intersection of differentially expressed proteins between the NSCLC groups and cell lines. Based on bioinformatics analysis, in silico immunohistochemical, and PRM verification, fibronectin is selected for following in vitro studies and validation with an independent cohort. Fibronectin on EVs is estimated to perform well in the diagnosis of NSCLC patients based on AUC, showing great potential for clinical use and demonstrating the efficacy of this method for EV-associated biomarker screening.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Proteome/genetics , Proteomics , A549 Cells , Adult , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Chromatography, Liquid , Early Detection of Cancer , Extracellular Vesicles/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Proteins/genetics , Neoplasm Staging , Tandem Mass Spectrometry
6.
Nano Lett ; 18(7): 4226-4232, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29888919

ABSTRACT

Exosomes shed by tumor cells have been recognized as promising biomarkers for cancer diagnostics due to their unique composition and functions. Quantification of low concentrations of specific exosomes present in very small volumes of clinical samples may be used for noninvasive cancer diagnosis and prognosis. We developed an immunosorbent assay for digital qualification of target exosomes using droplet microfluidics. The exosomes were immobilized on magnetic microbeads through sandwich ELISA complexes tagged with an enzymatic reporter that produces a fluorescent signal. The constructed beads were further isolated and encapsulated into a sufficient number of droplets to ensure only a single bead was encapsulated in a droplet. Our droplet-based single-exosome-counting enzyme-linked immunoassay (droplet digital ExoELISA) approach enables absolute counting of cancer-specific exosomes to achieve unprecedented accuracy. We were able to achieve a limit of detection (LOD) down to 10 enzyme-labeled exosome complexes per microliter (∼10-17 M). We demonstrated the application of the droplet digital ExoELISA platform in quantitative detection of exosomes in plasma samples directly from breast cancer patients. We believe our approach may have the potential for early diagnosis of cancer and accelerate the discovery of cancer exosomal biomarkers for clinical diagnosis.


Subject(s)
Biomarkers, Tumor/immunology , Breast Neoplasms/blood , Enzyme-Linked Immunosorbent Assay , Exosomes/immunology , Biomarkers, Tumor/isolation & purification , Breast Neoplasms/diagnosis , Breast Neoplasms/immunology , Cell Count , Exosomes/pathology , Female , Humans , Limit of Detection , Microfluidics/methods
8.
BMC Genomics ; 19(1): 802, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30400814

ABSTRACT

BACKGROUND: Epithelial-mesenchymal transition (EMT) is regarded as a critical event during tumor metastasis. Recent studies have revealed changes and the contributions of proteins in/on exosomes during EMT. Besides proteins, microRNA (miRNA) is another important functional component of exosomes. We hypothesized that the miRNA profile of exosomes may change following EMT and these exosomal miRNAs may in return promote EMT, migration and invasion of cancer cells. RESULTS: The small RNA profile of exosomes was altered following EMT. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the specific miRNAs of M-exosomes have the potential to drive signal transduction networks in EMT and cancer progression. Co-culture experiments confirmed that M-exosomes can enter epithelial cells and promote migration, invasion and expression of mesenchymal markers in the recipient cells. CONCLUSION: Our results reveal changes in the function and miRNA profile of exosomes upon EMT. M-exosomes can promote transfer of the malignant (mesenchymal) phenotype to epithelial recipient cells. Further, the miRNAs specifically expressed in M-exosomes are associated with EMT and metastasis, and may serve as new biomarkers for EMT-like processes in lung cancer.


Subject(s)
Epithelial-Mesenchymal Transition , Exosomes/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , Humans , Signal Transduction , Tumor Cells, Cultured
9.
Anal Chem ; 90(1): 859-865, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29183117

ABSTRACT

Accurate analysis of microRNAs (miRNAs) at the single-cell level seriously requires analytical methods possessing extremely high sensitivity, specificity and precision. By rational engineering of a structure-switchable symmetric toehold dumbbell-template (STD-template), we propose a novel isothermal symmetric exponential amplification reaction (SEXPAR) method. The sealed and symmetric structure of the STD-template allows exponential amplification reaction (EXPAR) to occur upon every annealing of target miRNA without loss of amplification efficiency. In addition, the rigid and compact structure of the STD-template with an appropriate standard free energy ensures SEXPAR only be activated by target miRNA. As a result, the SEXPAR method isothermally quantified let-7a down to 0.01 zmol (6.02 copies per 10 µL) with an ultrahigh specificity which is efficient enough to discriminate one-base-mismatched miRNAs, and a remarkably high precision even for the determination of 6.02 copies let-7a (the standard deviation was reduced from >60% down to 23%). The dynamic range was also extended to 10 orders of magnitude. The method was successfully applied for the determination of let-7a in human tissues, sera and even single-cell lysate, with obviously better precision than quantitative reverse transcription polymerase chain reaction (RT-qPCR) and other EXPAR-based methods. The SEXPAR method may serve as a powerful technique for the biological research and biomedical studies of miRNAs and other short nucleic acids.


Subject(s)
MicroRNAs/analysis , Nucleic Acid Amplification Techniques/methods , A549 Cells , Humans , MicroRNAs/blood , MicroRNAs/genetics , Nucleic Acid Hybridization , Single-Cell Analysis/methods
10.
Prostate ; 77(10): 1167-1175, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28617988

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) can be detected in body fluids and may serve as disease biomarkers. Increasing evidence suggests that circulating miRNAs in serum and urine may be potential non-invasive biomarkers for prostate cancer (PCa). In the present study, we aimed to investigate whether hydrostatic filtration dialysis (HFD) is suitable for urinary EVs (UEVs) isolation and whether such reported PCa-related miRNAs can be detected in UEVs as PCa biomarkers. METHODS: To analyze EVs miRNAs, we searched for an easy and economic method to enrich EVs from urine samples. We compared the efficiency of HFD method and conventional ultracentrifugation (UC) in isolating UEVs. Subsequently, UEVs were isolated from patients with PCa, patients with benign prostate hyperplasia (BPH) and healthy individuals. Differential expression of four PCa-related miRNAs (miR-572, miR-1290, miR-141, and miR-145) were measured in UEVs and paired serum EVs using SYBR Green-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: The overall performance of HFD was similar to UC. In miRNA yield, both HFD and UC can meet the needs of further analysis. The level of miR-145 in UEVs was significantly increased in patients with PCa compared with the patients with BPH (P = 0.018). In addition, significant increase was observed in miR-145 levels when patients with Gleason score ≥8 tumors compared with Gleason score ≤7 (P = 0.020). Receiver-operating characteristic curve (ROC) revealed that miR-145 in UEVs combined with serum PSA could differentiate PCa from BPH better than PSA alone (AUC 0.863 and AUC 0.805, respectively). In serum EVs, four miRNAs were significantly higher in patients with PCa than with BPH. CONCLUSION: HFD is appropriate for UEVs isolation and miRNA analysis when compared with conventional UC. miR-145 in UEVs is upregulated from PCa patients compared BPH patients and healthy controls. We suggest the potential use of UEVs miR-145 as a biomarker of PCa.


Subject(s)
Extracellular Vesicles , MicroRNAs , Prostatic Neoplasms , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , China , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Humans , Male , MicroRNAs/genetics , MicroRNAs/urine , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prostate/pathology , Prostate-Specific Antigen/analysis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/urine , Reproducibility of Results , Research Design
11.
Hepatol Int ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833138

ABSTRACT

BACKGROUND: To provide patients the chance of accepting curative transjugular intrahepatic portosystemic shunt (TIPS) rather than palliative treatments for portal hypertension-related variceal bleeding and ascites, we aimed to assess hepatic-associated vascular morphological change to improve the predictive accuracy of overt hepatic encephalopathy (HE) risks. METHODS: In this multicenter study, 621 patients undergoing TIPS were subdivided into training (413 cases from 3 hospitals) and external validation datasets (208 cases from another 3 hospitals). In addition to traditional clinical factors, we assessed hepatic-associated vascular morphological changes using maximum diameter (including absolute and ratio values). Three predictive models (clinical, hepatic-associated vascular, and combined) were constructed using logistic regression. Their discrimination and calibration were compared to test the necessity of hepatic-associated vascular assessment and identify the optimal model. Furthermore, to verify the improved performance of ModelC-V, we compared it with four previous models, both in discrimination and calibration. RESULTS: The combined model outperformed the clinical and hepatic-associated vascular models (training: 0.814, 0.754, 0.727; validation: 0.781, 0.679, 0.776; p < 0.050) and had the best calibration. Compared to previous models, ModelC-V showed superior performance in discrimination. The high-, middle-, and low-risk populations displayed significantly different overt HE incidence (p < 0.001). Despite the limited ability of pre-TIPS ammonia to predict overt HE risks, the combined model displayed a satisfactory ability to predict overt HE risks, both in the low- and high-ammonia subgroups. CONCLUSION: Hepatic-associated vascular assessment improved the predictive accuracy of overt HE, ensuring curative chances by TIPS for suitable patients and providing insights for cirrhosis-related studies.

12.
Biochim Biophys Acta Gen Subj ; 1867(10): 130439, 2023 10.
Article in English | MEDLINE | ID: mdl-37516256

ABSTRACT

Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carboplatin/pharmacology , Carboplatin/therapeutic use , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases
13.
iScience ; 26(8): 107325, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520722

ABSTRACT

Macrophages activation is crucial in pathogenesis of rheumatic diseases like ankylosing spondylitis (AS). Circular RNAs (circRNAs)-induced macrophage-associated inflammation participates in many autoimmune diseases but remains elusive in AS. Here, we verified increased expression of circIFNGR2 in peripheral blood mononuclear cells from patients with AS and its expression levels were correlated with the AS severity. In vitro assays revealed that circIFNGR2 enhances macrophage proliferation, and regulates M1/M2 macrophage polarization and NF-κB/Akt pathways. We identified that circIFNGR2 promoted the expression of iNOS/TNFα and M1 polarization, and restrained M2 polarization by sponging miR-939. Additionally, the RNA-binding protein, eIF4A3, was found to enhance the production of circIFNGR2. Interestingly, miR-939 attenuated joint damage in collagen-induced arthritis mice, whereas circIFNGR2 reversed this effect. Our findings highlight the pro-inflammatory roles of eIF4A3-induced circIFNGR2 in AS by modulating macrophage-associated inflammation through miR-939.

14.
Ann Transl Med ; 10(6): 321, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35433938

ABSTRACT

Background: Due to the high false-positive rate of the high-fluorescence body fluid (HF-BF) cell parameter of the hematology analyzer in BF mode, a novel algorithm based on the Mindray BC-6800 Plus hematology analyzer (BC-6800Plus), with higher diagnostic accuracy compared to that of the traditional HF-BF algorithm, was used to screen for malignant tumor cells in clinical BF samples. In this study, the body fluid mode of BC-6800Plus was applied to investigate the ability of its available parameters and characteristic regional particles in tumor cells screening. Methods: A total of 220 BF samples (including pleural effusion and ascites) were randomly classified into a training cohort (154 samples) and a validation cohort (66 samples), and detected on the BC-6800Plus in BF mode. Based on the scatter plot analysis of the instrument, a novel gating algorithm, malignant cell algorithm-body fluid (MA-BF), was designed to detect the aggregated cells expressing highest fluorescence (FL) signals and side-scatter (SS) signals than other cells. BF collection and analyses were performed in compliance with the CLSI H56-A guideline. tumor cell-positive samples were defined as greater than or equal to confirIIIb (Papanicolaou class system) by the pathological examination. The diagnostic accuracy of HF-BF and MA-BF were determined by the receiver operating characteristic (ROC) curve analysis. Results: When the cutoff values of the absolute count (HF-BF#) and relative count (HF-BF%) were set as 0.022×109/L and 3.0%, respectively, the area under curve (AUC), sensitivity, and specificity were 0.76, 0.85 and 0.55 for HF-BF#, and were 0.70, 0.85, and 0.49 for HF-BF%, respectively. The new parameters, the absolute tumor cell count (MA-BF#) and relative count (MA-BF%), were established in the training cohort using the novel algorithm. We confirmed the cutoff values of MA-HF# and MA-HF% in BF were set as 0.006×109/L and 0.2% in the training cohort, respectively. In the validation cohort, the AUC, sensitivity, and specificity were 0.89, 0.93, and 0.78 for MA-BF#, and were 0.89, 0.87 and 0.75 for MA-BF%, respectively. Conclusions: The MA-BF parameters of the novel algorithm output had better diagnostic accuracy for BF tumor cells than the traditional HF-BF parameters.

15.
Int J Nanomedicine ; 16: 715-724, 2021.
Article in English | MEDLINE | ID: mdl-33542626

ABSTRACT

OBJECTIVE: The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is now rapidly spreading globally. Serological tests are an important method to assist in the diagnosis of COVID-19, used for epidemiological investigations. In this study, we aimed to investigate the impact of different types of vacuum collection tubes on the detection of SARS-CoV-2 IgM and IgG antibodies, using the colloidal gold immunochromatographic assay (GICA). PATIENTS AND METHODS: A total of 112 patients with COVID-19 and 200 healthy control subjects with no infection were enrolled in this study. Their serum and plasma were collected into four different types of vacuum blood collection tubes. SARS-CoV-2 IgM and IgG specific antibodies in the plasma and serum were then detected by GICA and chemiluminescence assay (CA), respectively. In addition, the particle sizes of different colloidal gold solutions in the presence of different anticoagulants and coagulants were evaluated by both laser diffraction (Malvern) and confocal laser microscope, respectively. RESULTS: Our results revealed that anticoagulated plasma with EDTA-K2 improved the positive detection rate of SARS-CoV-2 IgM antibodies. Furthermore, our results shown that the detection results by GICA and CA were highly consistent, especially, the results of EDTA-K2 anticoagulated plasma detected by GICA was more consistent with CA results. We confirmed that EDTA-K2 could improve the detection sensitivity of SARS-CoV-2 IgG antibodies by chelating excessive colloidal gold compared with sodium citrate or lithium heparin, these methodologies did not appear to cause false positives. Colloidal gold particles could be chelated and aggregated by EDTA-K2, but not by sodium citrate, lithium heparin and coagulants. CONCLUSION: GICA is widely used to detect antibodies for the advantages of convenient, fast, low cost, suitable for screening large sample and require minimal equipment. In this study, we found that EDTA-K2 amplified the positive antibody signal by chelating colloidal gold and improved the detection sensitivity of SARS-CoV-2 IgM and IgG antibodies when using the GICA. Therefore, we suggested that EDTA-K2 anticoagulated plasma was more suitable for the detection of SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Viral/isolation & purification , Chelating Agents/chemistry , Edetic Acid/chemistry , Gold Colloid/chemistry , Immunoassay/methods , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Antibody Specificity/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Molecular Weight , Particle Size , Polymers/chemistry , Sensitivity and Specificity
16.
Front Cell Dev Biol ; 9: 737599, 2021.
Article in English | MEDLINE | ID: mdl-34977002

ABSTRACT

Circular RNAs (circRNAs) have emerged as important roles in various inflammatory processes of rheumatic diseases. However, their expression profiles and influences in the pathogenesis of ankylosing spondylitis (AS) remain unclear. In this study, we revealed the differential expression profiles of circRNAs in peripheral blood mononuclear cells (PBMCs) in AS by circRNA sequencing. We screened the differentially expressed circRNAs in AS and verified that hsa_circ_0000652 was upregulated and had potential to be a biomarker of progression. Functionally, hsa_circ_0000652 promoted proliferation and cytokine production in macrophages and inhibited apoptosis. Through dual-luciferase assays and RNA pull-down assays, we demonstrated that hsa_circ_0000652 acted as a competing endogenous RNA (ceRNA) by binding with hsa-miR-1179 and regulated OX40L, which is characterized as a co-stimulatory molecule and found to be upregulated in AS patients. As a result, hsa_circ_0000652 aggravated the inflammation in the coculture system containing CD4+ T cells and macrophages via OX40/OX40L interaction. Our findings suggest that hsa_circ_0000652 was upregulated in AS patients and may serve as a pro-inflammatory factor in macrophages and a positive regulator of OX40/OX40L by sponging hsa-miR-1179.

17.
Biosens Bioelectron ; 168: 112520, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32866725

ABSTRACT

Surface protein patterns of tumor-derived exosomes could be promising noninvasive diagnostic biomarkers for liquid biopsy. However, a convenient and cost-effective platform for exosomal protein profiling is still lacking. Herein, a facile fluorescent aptasensor is developed to assess exosomal tumor-associated proteins, combining aptamers, aggregation-induced emission luminogens (AIEgens), and graphene oxide (GO) as recognition elements, fluorescent dye, and the quencher, respectively. Specifically, numberous TPE-TAs could bind one aptamer and form aggregates rapidly, resulting in an amplified fluorescence signal. In the absence of tumor-derived exosomes, GO absorbs the TPE-TAs/aptamer complex, allowing fluorescence quenching. When the target exosomes are introduced, the aptamer preferentially binds with its target. Thus the TPE-TAs/aptamer complexes detach from GO surface, followed by the appearance of a "turn-on" fluorescent signal. Under the optimized conditions, the linear range of target exosomes is estimated to be 4.07 × 105 to 1.83 × 107 particles/µL (0.68-30.4 pM) with a detection limit of 3.43 × 105 particles/µL (0.57 pM). This strategy demonstrated great performance in differentiating prostate cancer from healthy individuals (AUC: 0.9790). Furthermore, by profiling three tumor-associated protein markers including epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), and human epidermal growth factor receptor 2 (HER2) on exosomes in a breast tumor cohort, this sensing platform diagnoses breast tumors with high efficiency (AUC: 0.9845) and exhibits a high sensitivity of 97.37% for distinguishing malignant breast cancers, where the stage I cases were detected with 92.31% sensitivity. Therefore, this aptasensor provides a promising strategy to profile tumor-derived exosomal proteins for early diagnosis in liquid biopsy.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Fluorescent Dyes , Humans , Liquid Biopsy
18.
ACS Sens ; 5(7): 2052-2060, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32594744

ABSTRACT

Tumor-derived exosomes carrying unique surface proteins have shown great promise as novel biomarkers for liquid biopsies. However, point-of-care analysis for tumor-derived exosomes in the blood with low-cost and easy processing is still challenging. Herein, we develop an integrated approach, homogenous magneto-fluorescent exosome (hMFEX) nanosensor, for rapid and on-site tumor-derived exosomes analysis. Tumor-derived exosomes are captured immunomagnetically, which further initiates the aptamer-triggered assembly of DNA three-way junctions in homogenous solution containing aggregation-induced emission luminogens and graphene oxide, resulting in an amplified fluorescence signal. By integrating magnetic isolation and enhanced fluorescence measurement, the hMFEX nanosensor detects tumor-derived exosomes in the dynamic range spanning 5 orders of magnitude with high specificity, and the limit of detection is 6.56 × 104 particles/µL. Analyzing tumor-derived exosomes in limited volume plasma from breast cancer patients demonstrates the excellent clinical diagnostic efficacy of the hMFEX nanosensor. This study provides new insights into the point-of-care testing of tumor-derived exosomes for cancer diagnostics.


Subject(s)
Breast Neoplasms , Exosomes , Humans , Liquid Biopsy
19.
Clin Chim Acta ; 509: 288-292, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32569631

ABSTRACT

BACKGROUND: To establish a safe and accurate method for detecting SARS-CoV-2 IgM and IgG, we assessed the impact of sera after heat-inactivation on the SARS-CoV-2 IgM and IgG levels measured by ELISA-immunoassay. METHODS: The serum samples of 62 patients with COVID-19 and 18 healthy controls were collected in Hankou's Hospital of Wuhan from February 27 to March 6, 2020. Before and after the samples were inactivated, the levels of IgM and IgG antibodies were measured. RESULTS: The indexes of antibodies after inactivated were significantly higher than those in fresh sera, while the positive rates in all participants or in patients with COVID-19 did not change. The positive coincidence rate, negative coincidence rate and total coincidence rate of IgM antibodies before and after inactivation were 100.00% (55/55), 96.00% (24/25) and 98.75% (79/80), respectively (κ = 0.971, P < 0.001), while those for IgG antibodies were 98.21% (55/56), 91.67% (22/24) and 98.75% (79/80) respectively (κ = 0.910, P < 0.001). These results showed a good consistency. CONCLUSIONS: Heating-activation does not decrease the diagnostic efficacy of SARS-CoV-2 IgM or IgG antibodies. Sera inactivated by heating at 56 °C for 30 min should be recommended to minimize the risk of virus contamination of laboratory staff.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Hot Temperature , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/blood , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Female , Hot Temperature/therapeutic use , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Retrospective Studies , SARS-CoV-2
20.
J Extracell Vesicles ; 9(1): 1809766, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-33144926

ABSTRACT

The utilization of extracellular vesicles (EVs) in clinical theranostics has rapidly advanced in the past decade. In November 2018, the International Society for Extracellular Vesicles (ISEV) held a workshop on "EVs in Clinical Theranostic". Here, we report the conclusions of roundtable discussions on the current advancement in the analysis technologies and we provide some guidelines to researchers in the field to consider the use of EVs in clinical application. The main challenges and the requirements for EV separation and characterization strategies, quality control and clinical investigation were discussed to promote the application of EVs in future clinical studies.

SELECTION OF CITATIONS
SEARCH DETAIL