Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Ecotoxicol Environ Saf ; 264: 115473, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37722302

ABSTRACT

Etiology of hepatic steatosis and metabolic dysfunction-associated fatty liver disease (MAFLD) among acute coronary syndrome (ACS) remains unclear. Existing studies suggested the potential role of per- and polyfluoroalkyl substances (PFAS) in comorbidity of hepatic steatosis among ACS patients. Therefore, we conducted a cross-sectional study based on the ACS inpatients to assess the associations of plasma PFAS congeners and mixtures with hepatic steatosis and MAFLD. This study included 546 newly diagnosed ACS patients. Twelve PFAS were quantified using ultra-high-performance liquid chromatography-tandem mass spectrometry. Hepatic steatosis was defined by hepatic steatosis index (HSI). MAFLD was defined as the combination of hepatic steatosis based on the risk factor calculation with metabolic abnormalities. Generalized linear model was used to examine the associations of PFAS congeners with HSI and MAFLD. Adaptive elastic net (AENET) was further used for PFAS congeners selection. Mixture effects were also assessed with Bayesian kernel machine regression model (BKMR). Congeners analysis observed significant greater percent change of HSI for each doubling in PFOS (1.82%, 95% CI: 0.87%, 2.77%), PFHxS (1.17%, 95% CI: 0.46%, 1.89%) and total PFAS (1.84%, 95% CI: 0.56%, 3.14%). Moreover, each doubling in PFOS (OR=1.42, 95% CI: 1.13, 1.81), PFHxS (OR=1.31, 95% CI: 1.09, 1.59) and total PFAS (OR=1.43, 95% CI: 1.06, 1.94) was associated with increased risk of MAFLD. In AENET regression, only PFOS presented significant positive associations with HSI. Mixture analysis indicated significant positive associations between PFAS mixtures and HSI. This is the first study to demonstrate associations of PFAS congeners and mixtures with hepatic steatosis and MAFLD among ACS patients, which provides hypothesis into the mechanisms behind comorbidity of hepatic steatosis among ACS patients, as well as tertiary prevention of ACS.


Subject(s)
Acute Coronary Syndrome , Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Non-alcoholic Fatty Liver Disease , Humans , Acute Coronary Syndrome/epidemiology , Bayes Theorem , Cross-Sectional Studies , Non-alcoholic Fatty Liver Disease/epidemiology
2.
Crit Rev Biotechnol ; 40(1): 99-118, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31690134

ABSTRACT

The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.


Subject(s)
Biotechnology , Waste Disposal, Fluid/methods , Biosensing Techniques , Environmental Monitoring
3.
J Hazard Mater ; 469: 133919, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38432093

ABSTRACT

Chlorinated polyfluorinated ether sulfonate (Cl-PFESA), a substitute for perfluorooctane sulfonate (PFOS), has been widely used in the Chinese electroplating industry under the trade name F-53B. The production and use of F-53B is keep increasing in recent years, consequently causing more emissions into the environment. Thus, there is a growing concern about the adverse effects of F-53B on human health. However, related research is very limited, particularly in terms of its toxicity to the vascular system. In this study, C57BL/6 J mice were exposed to 0.04, 0.2, and 1 mg/kg F-53B for 12 weeks to assess its impact on the vascular system. We found that F-53B exposure caused aortic wall thickening, collagen deposition, and reduced elasticity in mice. In addition, F-53B exposure led to a loss of vascular endothelial integrity and a vascular inflammatory response. Intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were found to be indispensable for this process. Furthermore, RNA sequencing analysis revealed that F-53B can decrease the repair capacity of endothelial cells by inhibiting their proliferation and migration. Collectively, our findings demonstrate that F-53B exposure induces vascular inflammation and loss of endothelial integrity as well as suppresses the repair capacity of endothelial cells, which ultimately results in vascular injury, highlighting the need for a more thorough risk assessment of F-53B to human health.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Animals , Mice , Ether/metabolism , Endothelial Cells , Zebrafish/metabolism , Mice, Inbred C57BL , Water Pollutants, Chemical/analysis , Alkanesulfonates/toxicity , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/metabolism , Fluorocarbons/analysis
4.
Chemosphere ; 362: 142750, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960049

ABSTRACT

Erythrogram, despite its prevalent use in assessing red blood cell (RBC) disorders and can be utilized to evaluate various diseases, still lacks evidence supporting the effects of per- and polyfluoroalkyl substances (PFASs) and organophosphate esters (OPEs) on it. A cross-sectional study involving 467 adults from Shijiazhuang, China was conducted to assess the associations between 12 PFASs and 11 OPEs and the erythrogram (8 indicators related to RBC). Three models, including multiple linear regression (MLR), sparse partial least squares regression, and Bayesian kernel machine regression (BKMR) were employed to evaluate both the individual and joint effects of PFASs and OPEs on the erythrogram. Perfluorohexane sulfonic acid (PFHxS) showed the strongest association with HGB (3.68%, 95% CI: 2.29%, 5.10%) when doubling among PFASs in MLR models. BKMR indicated that PFASs were more strongly associated with the erythrogram than OPEs, as evidenced by higher group posterior inclusion probabilities (PIPs) for PFASs. Within hemoglobin and hematocrit, PFHxS emerged as the most significant component (conditional PIP = 1.0 for both). Collectively, our study emphasizes the joint effect of PFASs and OPEs on the erythrogram and identified PFASs, particularly PFHxS, as the pivotal contributors to the erythrogram. Nonetheless, further investigations are warranted to elucidate the underlying mechanisms.

5.
Front Public Health ; 11: 1173101, 2023.
Article in English | MEDLINE | ID: mdl-37655293

ABSTRACT

Background: Existing evidence indicates that exposure to per- and polyfluoroalkyl substances (PFASs) may increase the risk of hypertension, but the findings are inconsistent. Therefore, we aimed to explore the relationship between PFASs and hypertension through this systematic review and meta-analysis. Methods: We searched PubMed, Embase, and the Web of Science databases for articles published in English that examined the relationship between PFASs and hypertension before 13 August 2022. The random effects model was used to aggregate the evaluation using Stata 15.0 for Windows. We also conducted subgroup analyses by region and hypertension definition. In addition, a sensitivity analysis was carried out to determine the robustness of the findings. Results: The meta-analysis comprised 15 studies in total with 69,949 individuals. The risk of hypertension was substantially and positively correlated with exposure to perfluorooctane sulfonate (PFOS) (OR = 1.31, 95% CI: 1.14, 1.51), perfluorooctanoic acid (PFOA) (OR = 1.16, 95% CI: 1.07, 1.26), and perfluorohexane sulfonate (PFHxS) (OR = 1.04, 95% CI: 1.00, 1.09). However, perfluorononanoic acid (PFNA) exposure and hypertension were not significantly associated (OR = 1.08, 95% CI: 0.99, 1.17). Conclusion: We evaluated the link between PFASs exposure and hypertension and discovered that higher levels of PFOS, PFOA, and PFHxS were correlated with an increased risk of hypertension. However, further high-quality population-based and pathophysiological investigations are required to shed light on the possible mechanism and demonstrate causation because of the considerable variability. Systematic review registration: https://www.crd.york.ac.uk/prospero/ PROSPERO, registration number: CRD 42022358142.


Subject(s)
Fluorocarbons , Hypertension , Humans , Alkanesulfonates , Fluorocarbons/adverse effects , Hypertension/epidemiology
6.
Chemosphere ; 313: 137464, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36495974

ABSTRACT

Exposures to perfluoroalkyl substances (PFAS) have been reported to increase the risk of atherosclerosis. Therefore, PFAS exposure may be linked to the risk of acute coronary syndrome (ACS), but this association remains uncertain. The objective of the present study was to investigate the association between PFAS exposure and ACS risk through a case-control study. The study included 355 newly diagnosed ACS cases and 355 controls matched by age (within 5 years) and sex. Twelve PFAS were measured in plasma by ultra-high-performance liquid chromatography-tandem mass spectrometry. The conditional logistic regression models were performed to investigate the association between the single and multiple PFAS and ACS risk. Furthermore, we investigated the association of PFAS mixture exposure with ACS risk using a quantile-based g-computation (qgcomp) approach. A mediating effect model was used to assess the mediating effect of platelet indices on the association between PFAS and ACS risk. The results showed that perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were significantly positively associated with ACS risk in the multiple-PFAS model 2, and this effect was not significant in females. The odds ratios (95% confidence intervals) for PFAS (z-score PFAS) and ACS risk were 1.51 (1.07, 2.15) for PFOA and 1.77 (1.15, 2.72) for PFOS. The dose-response relationships revealed an increasing trend for ACS risk with PFOA and PFOS and decreasing trend for perfluorohexane sulfonic acid (PFHxS) and perfluorodecanoic acid (PFDA). There was no significant correlation between PFAS mixture exposure and ACS risk. Analysis of mediation indicated that platelet count mediated the relationship between PFOS and ACS risk. Our study suggests that higher levels of PFOA and PFOS, and lower levels of PFHxS and PFDA may increase the risk of ACS. However, the reported negative associations should not be considered as protective, and uncertain unresolved confounding may contribute to this result.


Subject(s)
Acute Coronary Syndrome , Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Female , Humans , Child, Preschool , Case-Control Studies , Acute Coronary Syndrome/chemically induced , Acute Coronary Syndrome/epidemiology , Fluorocarbons/toxicity
7.
J Agric Food Chem ; 71(20): 7866-7877, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191230

ABSTRACT

Perfluorooctane sulfonate (PFOS), a new type of persistent organic pollutant in the environment of water, has drawn significant attention in recent years due to its widespread prevalence and high toxicity. Neurotoxicity is regarded as one of the major toxic effects of PFOS, while research studies on PFOS-induced depression and the underlying mechanisms remain scarce. In this study, behavioral tests revealed the depressive-like behaviors in PFOS-exposed male mice. Neuron damages including pyknosis and staining deepening were identified through hematoxylin and eosin staining. Then, we noticed the elevation of glutamate and proline levels as well as the decline of glutamine and tryptophan levels. Proteomics analysis identified 105 differentially expressed proteins that change in a dose-dependent manner and revealed that PFOS exposure activated the glutamatergic synapse signaling pathway, which were further confirmed by Western blot, and the data were consistent with the findings of the proteomics analysis. Additionally, the downstream signaling cyclic AMP-responsive element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and synaptic plasticity-related postsynaptic density protein 95, synaptophysin, were downregulated. Our results highlight that PFOS exposure may inhibit the synaptic plasticity of the hippocampus via glutamatergic synapse and the CREB/BDNF signaling pathway to cause depressive-like behaviors in male mice.


Subject(s)
Alkanesulfonic Acids , Brain-Derived Neurotrophic Factor , Male , Animals , Mice , Depression , Alkanesulfonic Acids/metabolism , Synapses/chemistry , Synapses/metabolism , Hippocampus
8.
J Hazard Mater ; 452: 131307, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37023579

ABSTRACT

The removal of a class of toxic thiol-containing heterocyclic pollutants from complex water matrices has great environmental significance. In this study, a novel photoanode (Au/MIL100(Fe)/TiO2) with dual recognition functions was designed for selective group-targeting photoelectrocatalytic removal of thiol-containing heterocyclic pollutants from various aquatic systems. The average degradation and adsorption removal efficiency of 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole were still above 96.7% and 13.5% after selective treatment with Au/MIL100(Fe)/TiO2 even coexisting with 10-fold concentration of macromolecular interferents (sulfide lignin and natural organic matters) and the same concentration of micromolecular structural analogues. While they were below 71.6% and 3.9% after non-selective treatment with TiO2. Targets in the actual system were selectively removed to 0.9 µg L-1, which is 1/10 of that after non-selective treatment. FTIR, XPS and operando electrochemical infrared results proved that the highly specific recognition mechanism was mainly attributable to both the size screening of MIL100(Fe) toward targets and Au-S bond formed between -SH group of targets and Au of Au/MIL100(Fe)/TiO2. •OH are the reactive oxygen species. The degradation mechanism was further investigated via excitation-emission matrix fluorescence spectroscopy and LC-MS. This study provides new guidelines for the selective group-targeting removal of toxic pollutants with characteristic functional groups from complex water matrices.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Titanium/chemistry , Sulfhydryl Compounds , Water , Water Pollutants, Chemical/chemistry
9.
Chemosphere ; 275: 130104, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33984911

ABSTRACT

With the development of industrial society, organic wastewater produced by industrial manufacturing has caused many environmental problems. The vast majority of organic pollutants in water bodies are persistent in the environment, posing a threat to human and animal health. Therefore, efficient treatment methods for highly concentrated organic wastewater are urgently needed. Advanced oxidation processes (AOPs) are widely noticed in the area of treating organic wastewater. Compared with other chemical methods, AOPs have the characteristics of high oxidation efficiency and no secondary pollution. In this paper, the mechanisms, advantages, and limitations of AOPs are comprehensively reviewed. Besides, the basic principles of combining different AOPs to enhance the treatment efficiency are described. Furthermore, the applications of AOPs in various wastewater treatments, such as oily wastewater, dyeing wastewater, pharmaceutical wastewater, and landfill leachate, are also presented. Finally, we conclude that the main direction in the future of AOPs are the modification of catalysts and the optimization of operating parameters, with the challenges focusing on industrial applications.


Subject(s)
Water Pollutants, Chemical , Water Purification , Catalysis , Humans , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical/analysis
10.
J Colloid Interface Sci ; 600: 161-173, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34010773

ABSTRACT

In Ti3C2 quantum dots (Ti3C2 QDs)/Bi2O3 photocatalysts system, Ti3C2 QDs can act as a co-catalyst to greatly boost the photocatalytic performance of Bi2O3. Ti3C2 QDs with excellent light adsorption ability can improve the light response of the system, and the fascinating electronic property can function as a channel for electron transfer. Moreover, Ti3C2 QDs possess larger specific area and more active edge atoms thanks to the size effect. The best Ti3C2 QDs/Bi2O3 composite with the loading amounts of 75 mL of Ti3C2 QDs solution showed much higher photocatalytic performance (nearly 5.85 times) for tetracycline (TC) degradation than that of pristine Bi2O3 under visible light irradiation. These different photocatalytic performances shed light on the key role of Ti3C2 QDs in stimulating the photocatalytic activity of Bi2O3. Moreover, Ti3C2 QDs/Bi2O3 composites exhibited excellent stability in recycling experiments and actual water sample treatment.


Subject(s)
Quantum Dots , Bismuth , Light , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL