Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Chem Res Toxicol ; 36(1): 53-65, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36534483

ABSTRACT

Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.


Subject(s)
Endocrine Disruptors , Hazardous Substances , Humans , Hazardous Substances/toxicity , Quantitative Structure-Activity Relationship , Molecular Conformation , Endocrine Disruptors/toxicity
2.
Environ Sci Technol ; 56(12): 8363-8372, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35561338

ABSTRACT

Data on toxic effects are at large missing the prevailing understanding of the risks of industrial chemicals. Thyroid hormone (TH) system disruption includes interferences of the life cycle of the thyroid hormones and may occur in various organs. In the current study, high-throughput screening data available for 14 putative molecular initiating events of adverse outcome pathways, related to disruption of the TH system, were used to develop 19 in silico models for identification of potential thyroid hormone system-disrupting chemicals. The conformal prediction framework with the underlying Random Forest was used as a wrapper for the models allowing for setting the desired confidence level and controlling the error rate of predictions. The trained models were then applied to two different databases: (i) an in-house database comprising xenobiotics identified in human blood and ii) currently used chemicals registered in the Swedish Product Register, which have been predicted to have a high exposure index to consumers. The application of these models showed that among currently used chemicals, fewer were overall predicted as active compared to chemicals identified in human blood. Chemicals of specific concern for TH disruption were identified from both databases based on their predicted activity.


Subject(s)
Endocrine Disruptors , Computer Simulation , Endocrine Disruptors/toxicity , High-Throughput Screening Assays , Humans , Thyroid Hormones/metabolism , Xenobiotics
3.
Environ Sci Technol ; 56(14): 10216-10228, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35797464

ABSTRACT

Bisphenol A (BPA) is an industrial chemical, which has raised human health and environmental concerns due to its endocrine-disrupting properties. BPA analogues are less well-studied despite their wide use in consumer products. These analogues have been detected in water and aquatic organisms around the world, with some analogues showing toxic effects in various species including fish. Here, we present novel organ-specific time-course distribution data of bisphenol Z (BPZ) in female zebrafish (Danio rerio), including concentrations in the ovaries, liver, and brain, a rarely sampled organ with high toxicological relevance. Furthermore, fish-specific in vitro biotransformation rates were determined for 11 selected bisphenols. A physiologically based toxicokinetic (PBTK) model was adapted for four of these bisphenols, which was able to predict levels in the gonads, liver, and brain as well as the whole body within a 2-5-fold error with respect to experimental data, covering several important target organs of toxicity. In particular, predicted liver concentrations improved compared to currently available PBTK models. Predicted data indicate that studied bisphenols mainly distribute to the carcass and gonads and less to the brain. Our model provides a tool to increase our understanding on the distribution and kinetics of a group of emerging pollutants.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Benzhydryl Compounds/toxicity , Brain , Female , Humans , Liver/metabolism , Phenols , Toxicokinetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
4.
Environ Sci Technol ; 55(2): 1088-1098, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33381962

ABSTRACT

Transformation products ought to be an important consideration in chemical alternatives assessment. In this study, a recently established hazard ranking tool for alternatives assessment based on in silico data and multicriteria decision analysis (MCDA) methods was further developed to include chemical transformation products. Decabromodiphenyl ether (decaBDE) and five proposed alternatives were selected as case chemicals; biotic and abiotic transformation reactions were considered using five in silico tools. A workflow was developed to select transformation products with the highest occurrence potential. The most probable transformation products of the alternative chemicals were often similarly persistent but more mobile in aquatic environments, which implies an increasing exposure potential. When persistence (P), bioaccumulation (B), mobility in the aquatic environment (M), and toxicity (T) are considered (via PBT, PMT, or PBMT composite scoring), all six flame retardants have at least one transformation product that can be considered more hazardous, across diverse MCDA. Even when considering transformation products, the considered alternatives remain less hazardous than decaBDE, though the range of hazard of the five alternatives was reduced. The least hazardous of the considered alternatives were melamine and bis(2-ethylhexyl)-tetrabromophthalate. This developed tool could be integrated within holistic alternatives assessments considering use and life cycle impacts or additionally prioritizing transformation products within (bio)monitoring screening studies.


Subject(s)
Flame Retardants , Hazardous Substances , Computer Simulation
5.
Environ Sci Technol ; 54(8): 4876-4885, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32186175

ABSTRACT

Plastic materials contain various additives, which can be released during the entire lifespan of plastics and pose a threat to the environment and human health. Despite our knowledge on leakage of additives from products, accurate and rapid approaches to study emission kinetics are largely lacking, in particular, methodologies that can provide in-depth understanding of polymer/additive interactions. Here, we report on a novel approach using quartz crystal microbalance (QCM) to measure emissions of additives to water from polymer films spin-coated on quartz crystals. The methodology, being accurate and reproducible with a standard error of ±2.4%, was applied to a range of organophosphate esters (OPEs) and polymers with varying physicochemical properties. The release of most OPEs reached an apparent steady-state within 10 h. The release curves for the studied OPEs could be fitted using a Weibull model, which shows that the release is a two-phase process with an initial fast phase driven by partitioning of OPEs readily available at or close to the polymer film surface, and a slower phase dominated by diffusion in the polymer. The kinetics of the first emission phase was mainly correlated with the hydrophobicity of the OPEs, whereas the diffusion phase was weakly correlated with molecular size. The developed QCM-based method for assessing and studying release of organic chemicals from a polymeric matrix is well suited for rapid screening of additives in efforts to identify more sustainable replacement polymer additives with lower emission potential.


Subject(s)
Polymers , Quartz Crystal Microbalance Techniques , Esters , Humans , Organophosphates , Quartz , Water
6.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423144

ABSTRACT

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.


Subject(s)
Diabetes Mellitus/epidemiology , Endocrine Disruptors/adverse effects , Fatty Liver/epidemiology , Obesity/epidemiology , Adipocytes/drug effects , Adipocytes/pathology , Diabetes Mellitus/chemically induced , Diabetes Mellitus/prevention & control , Fatty Liver/chemically induced , Fatty Liver/prevention & control , Humans , Metabolic Networks and Pathways/drug effects , Obesity/chemically induced , Obesity/prevention & control , Risk Assessment
7.
Environ Sci Technol ; 53(11): 6341-6351, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31081616

ABSTRACT

Alternatives assessment is applied for minimizing the risk of unintentionally replacing a hazardous chemical with another hazardous chemical. Central challenges are the diversity of properties to consider and the lack of high-quality experimental data. To address this, a novel alternatives assessment procedure was developed based on in silico data and multicriteria decision analysis (MCDA) methods. As a case study, 16 alternatives to the flame retardant decabromodiphenyl ether were considered. The hazard properties included persistence (P), bioaccumulation potential (B), toxicities (T), and mobility in water (M). Databases were consulted and 2866 experimental data points were collected for the target chemicals; however, these were mostly replicate data points for some hazard criteria for a subset of alternatives. Therefore, in silico data and three MCDA strategies were tested including heat mapping, multiattribute utility theory (MAUT), and Elimination Et Choix Traduisant la REalité (ELECTRE III). The heat map clearly showed that none of the target chemicals are hazard-free, whereas MAUT and ELECTRE III agreed on ranking the "least worst" choices. This study identified several challenges and the complexity in the alternatives assessment processes motivating more case studies combining in silico and MCDA approaches.


Subject(s)
Flame Retardants , Hazardous Substances , Decision Support Techniques , Halogenated Diphenyl Ethers , Risk Assessment
8.
J Environ Manage ; 246: 920-928, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31279249

ABSTRACT

A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31 MPs showed removal efficiency >90% by GAC with an average removal of 97 ±â€¯6%. Xylit and lignite were less efficient with an average removal of 80 ±â€¯28% and 68 ±â€¯29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12 ±â€¯27% and 14 ±â€¯2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Phosphorus , Waste Disposal, Fluid , Wastewater
9.
Environ Sci Technol ; 52(15): 8894-8902, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30005570

ABSTRACT

Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor having functional cross-talk with classical estrogen receptors. Here, we investigated whether ERRγ is a potential target of polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (OH-PBDEs). By using a fluorescence competitive binding method established in our laboratory, the binding potencies of 30 PBDEs/OH-PBDEs with ERRγ were determined for the first time. All of the tested OH-PBDEs and some PBDEs bound to ERRγ with Kd values ranging from 0.13-13.61 µM. The OH-PBDEs showed much higher binding potency than their parent PBDEs. A quantitative structure-activity relationship (QSAR) model was developed to analyze the chemical binding potencies in relation to their structural and chemical characteristics. The QSAR model indicated that the molecular size, relative ratios of aromatic atoms, and hydrogen bond donors and acceptors were crucial factors for PBDEs/OH-PBDEs binding. By using a reporter gene assay, we found that most of the low-brominated PBDEs/OH-PBDEs exerted agonistic activity toward ERRγ, while high-brominated PBDEs/OH-PBDEs had no effect on the basal ERRγ activity. The docking results showed that the low-brominated PBDEs/OH-PBDEs tended to take an agonistic binding mode while the high-brominated ones tended to take an antagonistic binding mode. Overall, our results suggest ERRγ to be a potential novel target for PBDEs/OH-PBDEs.


Subject(s)
Halogenated Diphenyl Ethers , Receptors, Estrogen , Estrogens , Genes, Reporter , Hydroxylation
10.
Environ Sci Technol ; 52(20): 11865-11874, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30226982

ABSTRACT

Thyroid-disrupting chemicals (TDCs) are xenobiotics that can interfere with the endocrine system and cause adverse effects in organisms and their offspring. TDCs affect both the thyroid gland and regulatory enzymes associated with thyroid hormone homeostasis. Transthyretin (TTR) is found in the serum and cerebrospinal fluid of vertebrates, where it transports thyroid hormones. Here, we explored the interspecies variation in TDC binding to human and fish TTR (exemplified by Gilthead seabream ( Sparus aurata)). The in vitro binding experiments showed that TDCs bind with equal or weaker affinity to seabream TTR than to the human TTR, in particular, the polar TDCs (>500-fold lower affinity). Crystal structures of the seabream TTR-TDC complexes revealed that all TDCs bound at the thyroid binding sites. However, amino acid substitution of Ser117 in human TTR to Thr117 in seabream prevented polar TDCs from binding deep in the hormone binding cavity, which explains their low affinity to seabream TTR. Molecular dynamics and in silico alanine scanning simulation also suggested that the protein backbone of seabream TTR is more rigid than the human one and that Thr117 provides fewer electrostatic contributions than Ser117 to ligand binding. This provides an explanation for the weaker affinities of the ligands that rely on electrostatic interactions with Thr117. The lower affinities of TDCs to fish TTR, in particular the polar ones, could potentially lead to milder thyroid-related effects in fish.


Subject(s)
Sea Bream , Thyroid Gland , Animals , Endocrine System , Humans , Prealbumin , Thyroid Hormones
11.
J Environ Sci (China) ; 62: 115-132, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289283

ABSTRACT

Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000µg/kg; ∑FR-7: 300-13,000µg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m3 WEEE/vehicle facilities, 80-900pg/m3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, Kwaste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated Kwaste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Flame Retardants/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Bromobenzenes/analysis , Electronic Waste/analysis , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Chlorinated/analysis , Norway , Plastics , Polybrominated Biphenyls/analysis , Polycyclic Compounds/analysis , Waste Management
12.
Chem Res Toxicol ; 29(8): 1345-54, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27410513

ABSTRACT

Thyroid hormone disrupting chemicals (THDCs), often found abundantly in the environment, interfere with normal thyroid hormone signaling and induce physiological malfunctions, possibly by affecting thyroid hormone receptors (THRs). Indoor dust ingestion is a significant human exposure route of THDCs, raising serious concerns for human health. Here, we developed a virtual screening protocol based on an ensemble of X-ray crystallographic structures of human THRß1 and the generalized Born solvation model to identify potential THDCs targeting the human THRß1 isoform. The protocol was applied to virtually screen an in-house indoor dust contaminant inventory, yielding 31 dust contaminants as potential THRß1 binders. Five predicted binders and one negative control were tested using isothermal titration calorimetry, of which four, i.e., 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE-HCl-H2O), 2,2',4,4'-tetrahydroxybenzophenone (BP2), and 2,4-dichlorophenoxyacetic acid (2,4-D), were identified as THRß1 binders with binding affinities ranging between 60 µM and 460 µM. Molecular dynamics (MD) simulations were employed to examine potential binding modes of these binders and provided a rationale for explaining their specific recognition by THRß1. The combination of in vitro binding affinity measurements and MD simulations allowed identification of four new potential THR-targeting THDCs that have been found in household dust. We suggest using the developed structure-based virtual screening protocol to identify and prioritize testing of potential THDCs.


Subject(s)
Dust , Endocrine Disruptors/toxicity , Receptors, Thyroid Hormone/drug effects , Endocrine Disruptors/metabolism , Humans , Molecular Dynamics Simulation , Receptors, Thyroid Hormone/metabolism
14.
Environ Sci Technol ; 50(21): 11984-11993, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27668830

ABSTRACT

Thyroid disruption by xenobiotics is associated with a broad spectrum of severe adverse outcomes. One possible molecular target of thyroid hormone disrupting chemicals (THDCs) is transthyretin (TTR), a thyroid hormone transporter in vertebrates. To better understand the interactions between TTR and THDCs, we determined the crystallographic structures of human TTR in complex with perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 2,2',4,4'-tetrahydroxybenzophenone (BP2). The molecular interactions between the ligands and TTR were further characterized using molecular dynamics simulations. A structure-based virtual screening (VS) protocol was developed with the intention of providing an efficient tool for the discovery of novel TTR-binders from the Tox21 inventory. Among the 192 predicted binders, 12 representatives were selected, and their TTR binding affinities were studied with isothermal titration calorimetry, of which seven compounds had binding affinities between 0.26 and 100 µM. To elucidate structural details in their binding to TTR, crystal structures were determined of TTR in complex with four of the identified compounds including 2,6-dinitro-p-cresol, bisphenol S, clonixin, and triclopyr. The compounds were found to bind in the TTR hormone binding sites as predicted. Our results show that the developed VS protocol is able to successfully identify potential THDCs, and we suggest that it can be used to propose THDCs for future toxicological evaluations.


Subject(s)
Prealbumin/metabolism , Thyroid Gland/metabolism , Animals , Binding Sites , Computer Simulation , Humans , Thyroid Hormones/metabolism
15.
Chem Res Toxicol ; 28(4): 641-50, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25654323

ABSTRACT

Consensus toxicity factors (CTFs) were developed as a novel approach to establish toxicity factors for risk assessment of dioxin-like compounds (DLCs). Eighteen polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and biphenyls (PCBs) with assigned World Health Organization toxic equivalency factors (WHO-TEFs) and two additional PCBs were screened in 17 human and rodent bioassays to assess their induction of aryl hydrocarbon receptor-related responses. For each bioassay and compound, relative effect potency values (REPs) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin were calculated and analyzed. The responses in the human and rodent cell bioassays generally differed. Most notably, the human cell models responded only weakly to PCBs, with 3,3',4,4',5-pentachlorobiphenyl (PCB126) being the only PCB that frequently evoked sufficiently strong responses in human cells to permit us to calculate REP values. Calculated REPs for PCB126 were more than 30 times lower than the WHO-TEF value for PCB126. CTFs were calculated using score and loading vectors from a principal component analysis to establish the ranking of the compounds and, by rescaling, also to provide numerical differences between the different congeners corresponding to the TEF scheme. The CTFs were based on rat and human bioassay data and indicated a significant deviation for PCBs but also for certain PCDD/Fs from the WHO-TEF values. The human CTFs for 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,4,7,8,9-heptachlorodibenzofuran were up to 10 times greater than their WHO-TEF values. Quantitative structure-activity relationship models were used to predict CTFs for untested WHO-TEF compounds, suggesting that the WHO-TEF value for 1,2,3,7,8-pentachlorodibenzofuran could be underestimated by an order of magnitude for both human and rodent models. Our results indicate that the CTF approach provides a powerful tool for condensing data from batteries of screening tests using compounds with similar mechanisms of action, which can be used to improve risk assessment of DLCs.


Subject(s)
Benzofurans/toxicity , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/analogs & derivatives , Receptors, Aryl Hydrocarbon/physiology , Animals , Benzofurans/chemistry , Computer Simulation , Dibenzofurans, Polychlorinated , Humans , In Vitro Techniques , Polychlorinated Biphenyls/chemistry , Polychlorinated Dibenzodioxins/chemistry , Polychlorinated Dibenzodioxins/toxicity , Quantitative Structure-Activity Relationship , Rats , Rodentia
16.
Environ Sci Technol ; 49(16): 10099-107, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26207645

ABSTRACT

Thyroid hormone disrupting chemicals (THDCs) interfere with the thyroid hormone system and may induce multiple severe physiological disorders. Indoor dust ingestion is a major route of THDCs exposure in humans, and one of the molecular targets of these chemicals is the hormone transporter transthyretin (TTR). To virtually screen indoor dust contaminants and their metabolites for THDCs targeting TTR, we developed a quantitative structure-activity relationship (QSAR) classification model. The QSAR model was applied to an in-house database including 485 organic dust contaminants reported from literature data and their 433 in silico derived metabolites. The model predicted 37 (7.6%) dust contaminants and 230 (53.1%) metabolites as potential TTR binders. Four new THDCs were identified after testing 23 selected parent dust contaminants in a radio-ligand TTR binding assay; 2,2',4,4'-tetrahydroxybenzophenone, perfluoroheptanesulfonic acid, 3,5,6-trichloro-2-pyridinol, and 2,4,5-trichlorophenoxyacetic acid. These chemicals competitively bind to TTR with 50% inhibition (IC50) values at or below 10 µM. Molecular docking studies suggested that these THDCs interacted similarly with TTR via the residue Ser117A, but their binding poses were dissimilar to the endogenous ligand T4. This study identified new THDCs using an in silico approach in combination with bioassay testing and highlighted the importance of metabolic activation for TTR binding.


Subject(s)
Computer Simulation , Dust/analysis , Endocrine Disruptors/analysis , Metabolome , Thyroid Hormones/metabolism , 2,4,5-Trichlorophenoxyacetic Acid , Air Pollution, Indoor/analysis , Binding Sites , Databases as Topic , Discriminant Analysis , Humans , Inhibitory Concentration 50 , Least-Squares Analysis , Molecular Docking Simulation , Prealbumin/metabolism , Protein Multimerization , Quantitative Structure-Activity Relationship , Support Vector Machine
17.
Anal Bioanal Chem ; 407(19): 5625-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25986900

ABSTRACT

A variety of anthropogenic compounds has been found to be capable of disrupting the endocrine systems of organisms, in laboratory studies as well as in wildlife. The most widely described endpoint is estrogenicity, but other hormonal disturbances, e.g., thyroid hormone disruption, are gaining more and more attention. Here, we present a review and chemical characterization, using principal component analysis, of organic compounds that have been tested for their capacity to bind competitively to the thyroid hormone transport protein transthyretin (TTR). The database contains 250 individual compounds and technical mixtures, of which 144 compounds are defined as TTR binders. Almost one third of these compounds (n = 52) were even more potent than the natural hormone thyroxine (T4). The database was used as a tool to assist in the identification of thyroid hormone-disrupting compounds (THDCs) in an effect-directed analysis (EDA) study of a sediment sample. Two compounds could be confirmed to contribute to the detected TTR-binding potency in the sediment sample, i.e., triclosan and nonylphenol technical mixture. They constituted less than 1% of the TTR-binding potency of the unfractionated extract. The low rate of explained activity may be attributed to the challenges related to identification of unknown contaminants in combination with the limited knowledge about THDCs in general. This study demonstrates the need for databases containing compound-specific toxicological properties. In the framework of EDA, such a database could be used to assist in the identification and confirmation of causative compounds focusing on thyroid hormone disruption.


Subject(s)
Databases, Factual , Endocrine Disruptors/analysis , Geologic Sediments/chemistry , Thyroid Hormones , Humans , Structure-Activity Relationship
18.
Chem Res Toxicol ; 27(7): 1120-32, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24901989

ABSTRACT

For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO-TEFs with a few exceptions. The QSAR models indicated that, e.g., 1,2,3,7,8-pentachlorodibenzofuran and 1,2,3,7,8,9-hexachlorodibenzofuran were more potent than given by their assigned WHO-TEF values, and the non-ortho PCB 81 was predicted, based on the guinea-pig model, to be 1 order of magnitude above its WHO-TEF value. By combining in vitro and in silico approaches, REPs were established for all WHO-TEF assigned compounds (except OCDD), which will provide future guidance in testing AhR-mediated responses of DLCs and to increase our understanding of species variation in AhR-mediated effects.


Subject(s)
Benzofurans/pharmacology , Polychlorinated Biphenyls/pharmacology , Polychlorinated Dibenzodioxins/analogs & derivatives , Receptors, Aryl Hydrocarbon/metabolism , Animals , Biological Assay , Cell Line, Tumor , Computer Simulation , Dibenzofurans, Polychlorinated , Dose-Response Relationship, Drug , Guinea Pigs , Luciferases/metabolism , Mice , Models, Biological , Polychlorinated Dibenzodioxins/pharmacology , Quantitative Structure-Activity Relationship , Rats , Receptors, Aryl Hydrocarbon/agonists
19.
Arch Toxicol ; 88(3): 637-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24363026

ABSTRACT

Risk assessment for mixtures of dioxin-like compounds uses the toxic equivalency factor (TEF) approach. Although current WHO-TEFs are mostly based on oral administration, they are commonly used to determine toxicity equivalencies (TEQs) in human blood or tissues. However, the use of "intake" TEFs to calculate systemic TEQs in for example human blood, has never been validated. In this study, intake and systemic relative effect potencies (REPs) for 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), 2,3',4,4',5-pentachlorobiphenyl (PCB-118) and 2,3,3',4,4',5-hexachlorobiphenyl (PCB-156) were compared in rats. The effect potencies were calculated based on administered dose and liver, adipose or plasma concentrations in female Sprague-Dawley rats 3 days after a single oral dose, relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Hepatic ethoxyresorufin-O-deethylase activity and gene expression of Cyp1a1, 1a2, 1b1 and aryl hydrocarbon receptor repressor in liver and peripheral blood lymphocytes were used as endpoints. Results show that plasma-based systemic REPs were generally within a half log range around the intake REPs for all congeners tested, except for 4-PeCDF. Together with our previously reported systemic REPs from a mouse study, these data do not warrant the use of systemic REPs as systemic TEFs for human risk assessment. However, further investigation for plasma-based systemic REPs for 4-PeCDF is desirable.


Subject(s)
Dioxins/administration & dosage , Dioxins/pharmacokinetics , Administration, Oral , Animals , Benzofurans/administration & dosage , Benzofurans/pharmacokinetics , Benzofurans/toxicity , Body Weight/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Dioxins/toxicity , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Lymphocytes/drug effects , Polychlorinated Biphenyls/administration & dosage , Polychlorinated Biphenyls/pharmacokinetics , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/administration & dosage , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/pharmacokinetics , Polychlorinated Dibenzodioxins/toxicity , Rats , Rats, Sprague-Dawley , Tissue Distribution
20.
Sci Total Environ ; 912: 168738, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38030006

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 µg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Animals , Zebrafish , Tissue Distribution , Alkanesulfonic Acids/analysis , Alkanesulfonates , Biological Transport , Fluorocarbons/analysis , Environmental Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL