Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Nat Rev Genet ; 21(2): 71-87, 2020 02.
Article in English | MEDLINE | ID: mdl-31605096

ABSTRACT

The proper activities of enhancers and gene promoters are essential for coordinated transcription within a cell. Although diverse methodologies have been developed to identify enhancers and promoters, most have tacitly assumed that these elements are distinct. However, studies have unexpectedly shown that regulatory elements may have both enhancer and promoter functions. Here we review these results, focusing on the factors that determine the promoter and/or enhancer activity of regulatory elements. We discuss emerging models that define regulatory elements by accessible DNA and their non-mutually-exclusive abilities to drive transcription initiation (promoter activity) and/or to enhance transcription at other such regions (enhancer activity).


Subject(s)
Enhancer Elements, Genetic , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , DNA/genetics , Transcription, Genetic
2.
Mol Syst Biol ; 19(7): e11392, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37158788

ABSTRACT

Many genes are co-expressed and form genomic domains of coordinated gene activity. However, the regulatory determinants of domain co-activity remain unclear. Here, we leverage human individual variation in gene expression to characterize the co-regulatory processes underlying domain co-activity and systematically quantify their effect sizes. We employ transcriptional decomposition to extract from RNA expression data an expression component related to co-activity revealed by genomic positioning. This strategy reveals close to 1,500 co-activity domains, covering most expressed genes, of which the large majority are invariable across individuals. Focusing specifically on domains with high variability in co-activity reveals that contained genes have a higher sharing of eQTLs, a higher variability in enhancer interactions, and an enrichment of binding by variably expressed transcription factors, compared to genes within non-variable domains. Through careful quantification of the relative contributions of regulatory processes underlying co-activity, we find transcription factor expression levels to be the main determinant of gene co-activity. Our results indicate that distal trans effects contribute more than local genetic variation to individual variation in co-activity domains.


Subject(s)
Gene Expression Regulation , Transcription Factors , Humans , Transcription Factors/genetics , Genome , Genomics
3.
Nucleic Acids Res ; 50(4): 2111-2127, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35166831

ABSTRACT

Transposable elements are an abundant source of transcription factor binding sites, and favorable genomic integration may lead to their recruitment by the host genome for gene regulatory functions. However, it is unclear how frequent co-option of transposable elements as regulatory elements is, to which regulatory programs they contribute and how they compare to regulatory elements devoid of transposable elements. Here, we report a transcription initiation-centric, in-depth characterization of the transposon-derived regulatory landscape of mouse embryonic stem cells. We demonstrate that a substantial number of transposable element insertions, in particular endogenous retroviral elements, are associated with open chromatin regions that are divergently transcribed into unstable RNAs in a cell-type specific manner, and that these elements contribute to a sizable proportion of active enhancers and gene promoters. We further show that transposon subfamilies contribute differently and distinctly to the pluripotency regulatory program through their repertoires of transcription factor binding site sequences, shedding light on the formation of regulatory programs and the origins of regulatory elements.


Subject(s)
Endogenous Retroviruses , Animals , DNA Transposable Elements/genetics , Embryonic Stem Cells/metabolism , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Mice , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Genome Res ; 30(7): 951-961, 2020 07.
Article in English | MEDLINE | ID: mdl-32718981

ABSTRACT

Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.


Subject(s)
Evolution, Molecular , Transcriptome , Animals , Chickens/genetics , Dogs , Gene Expression Profiling , Gene Regulatory Networks , Humans , Mice , MicroRNAs/metabolism , Nucleotide Motifs , Principal Component Analysis , Promoter Regions, Genetic , Rats , Species Specificity , Transcription Factors/metabolism
6.
Nature ; 507(7493): 462-70, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670764

ABSTRACT

Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.


Subject(s)
Atlases as Topic , Molecular Sequence Annotation , Promoter Regions, Genetic/genetics , Transcriptome/genetics , Animals , Cell Line , Cells, Cultured , Cluster Analysis , Conserved Sequence/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genes, Essential/genetics , Genome/genetics , Humans , Mice , Open Reading Frames/genetics , Organ Specificity , RNA, Messenger/analysis , RNA, Messenger/genetics , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic/genetics
7.
Nature ; 507(7493): 455-461, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670763

ABSTRACT

Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.


Subject(s)
Atlases as Topic , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Molecular Sequence Annotation , Organ Specificity , Cell Line , Cells, Cultured , Cluster Analysis , Genetic Predisposition to Disease/genetics , HeLa Cells , Humans , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription Initiation Site , Transcription Initiation, Genetic
8.
Nucleic Acids Res ; 46(11): 5455-5469, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29659982

ABSTRACT

Mammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in Drosophila melanogaster. We find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The seemingly separable layer of regulation by gene promoters with housekeeping enhancer potential is also indicated by chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.


Subject(s)
Drosophila melanogaster/genetics , Enhancer Elements, Genetic/genetics , Promoter Regions, Genetic/genetics , Transcription Initiation Site , Transcription, Genetic/genetics , Animals , Cell Line , Histone Code/physiology , RNA/metabolism , RNA Stability/genetics , Transcriptional Activation/genetics
9.
Nucleic Acids Res ; 46(21): 11502-11513, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30212902

ABSTRACT

Gene expression programs change during cellular transitions. It is well established that a network of transcription factors and chromatin modifiers regulate RNA levels during embryonic stem cell (ESC) differentiation, but the full impact of post-transcriptional processes remains elusive. While cytoplasmic RNA turnover mechanisms have been implicated in differentiation, the contribution of nuclear RNA decay has not been investigated. Here, we differentiate mouse ESCs, depleted for the ribonucleolytic RNA exosome, into embryoid bodies to determine to which degree RNA abundance in the two states can be attributed to changes in transcription versus RNA decay by the exosome. As a general observation, we find that exosome depletion mainly leads to the stabilization of RNAs from lowly transcribed loci, including several protein-coding genes. Depletion of the nuclear exosome cofactor RBM7 leads to similar effects. In particular, transcripts that are differentially expressed between states tend to be more exosome sensitive in the state where expression is low. We conclude that the RNA exosome contributes to down-regulation of transcripts with disparate expression, often in conjunction with transcriptional down-regulation.


Subject(s)
Cell Differentiation/genetics , Exosomes/genetics , Gene Expression Regulation , Mouse Embryonic Stem Cells/metabolism , RNA/genetics , Animals , Exosomes/metabolism , Gene Expression Profiling , Mice , Mouse Embryonic Stem Cells/cytology , RNA/metabolism , RNA Interference , RNA Stability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
BMC Bioinformatics ; 20(1): 487, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31585526

ABSTRACT

BACKGROUND: 5'-end sequencing assays, and Cap Analysis of Gene Expression (CAGE) in particular, have been instrumental in studying transcriptional regulation. 5'-end methods provide genome-wide maps of transcription start sites (TSSs) with base pair resolution. Because active enhancers often feature bidirectional TSSs, such data can also be used to predict enhancer candidates. The current availability of mature and comprehensive computational tools for the analysis of 5'-end data is limited, preventing efficient analysis of new and existing 5'-end data. RESULTS: We present CAGEfightR, a framework for analysis of CAGE and other 5'-end data implemented as an R/Bioconductor-package. CAGEfightR can import data from BigWig files and allows for fast and memory efficient prediction and analysis of TSSs and enhancers. Downstream analyses include quantification, normalization, annotation with transcript and gene models, TSS shape statistics, linking TSSs to enhancers via co-expression, identification of enhancer clusters, and genome-browser style visualization. While built to analyze CAGE data, we demonstrate the utility of CAGEfightR in analyzing nascent RNA 5'-data (PRO-Cap). CAGEfightR is implemented using standard Bioconductor classes, making it easy to learn, use and combine with other Bioconductor packages, for example popular differential expression tools such as limma, DESeq2 and edgeR. CONCLUSIONS: CAGEfightR provides a single, scalable and easy-to-use framework for comprehensive downstream analysis of 5'-end data. CAGEfightR is designed to be interoperable with other Bioconductor packages, thereby unlocking hundreds of mature transcriptomic analysis tools for 5'-end data. CAGEfightR is freely available via Bioconductor: bioconductor.org/packages/CAGEfightR .


Subject(s)
Gene Expression Profiling/methods , Software , Transcription Initiation Site
11.
PLoS Comput Biol ; 14(3): e1005934, 2018 03.
Article in English | MEDLINE | ID: mdl-29494619

ABSTRACT

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.


Subject(s)
Genetic Predisposition to Disease/genetics , Genomics/methods , Promoter Regions, Genetic/genetics , Crohn Disease/genetics , Databases, Genetic , Gene Expression Profiling , Humans , Transcriptome/genetics
12.
Nucleic Acids Res ; 45(D1): D737-D743, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27794045

ABSTRACT

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.


Subject(s)
Databases, Genetic , Gene Expression Profiling/methods , Genomics/methods , Mammals/genetics , Software , Web Browser , Animals , Computational Biology , Humans , Search Engine
13.
Trends Genet ; 31(8): 426-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26073855

ABSTRACT

Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However, recent studies have revealed broad similarities between enhancers and promoters, blurring the distinction: active enhancers often initiate transcription, and some gene promoters have the potential to enhance transcriptional output of other promoters. Here, we propose a model in which promoters and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements.


Subject(s)
Regulatory Elements, Transcriptional/genetics , Transcription, Genetic , Animals , Chromatin/metabolism , Histones/metabolism , Humans , Protein Processing, Post-Translational/genetics , RNA Stability/genetics
14.
Genome Res ; 25(10): 1546-57, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26228054

ABSTRACT

Promoters are central to the regulation of gene expression. Changes in gene regulation are thought to underlie much of the adaptive diversification between species and phenotypic variation within populations. In contrast to earlier work emphasizing the importance of enhancer evolution and subtle sequence changes at promoters, we show that dramatic changes such as the complete gain and loss (collectively, turnover) of functional promoters are common. Using quantitative measures of transcription initiation in both humans and mice across 52 matched tissues, we discriminate promoter sequence gains from losses and resolve the lineage of changes. We also identify expression divergence and functional turnover between orthologous promoters, finding only the latter is associated with local sequence changes. Promoter turnover has occurred at the majority (>56%) of protein-coding genes since humans and mice diverged. Tissue-restricted promoters are the most evolutionarily volatile where retrotransposition is an important, but not the sole, source of innovation. There is considerable heterogeneity of turnover rates between promoters in different tissues, but the consistency of these in both lineages suggests that the same biological systems are similarly inclined to transcriptional rewiring. The genes affected by promoter turnover show evidence of adaptive evolution. In mice, promoters are primarily lost through deletion of the promoter containing sequence, whereas in humans, many promoters appear to be gradually decaying with weak transcriptional output and relaxed selective constraint. Our results suggest that promoter gain and loss is an important process in the evolutionary rewiring of gene regulation and may be a significant source of phenotypic diversification.


Subject(s)
Evolution, Molecular , Promoter Regions, Genetic , Animals , Base Sequence , Conserved Sequence , DNA , DNA Transposable Elements , Humans , Mice , Mutagenesis, Insertional , Sequence Deletion , Species Specificity
15.
EMBO Rep ; 17(5): 753-68, 2016 05.
Article in English | MEDLINE | ID: mdl-26902262

ABSTRACT

Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.


Subject(s)
Gene Expression Regulation , Retroelements , Transcription Initiation Site , Base Sequence , Catalysis , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Models, Biological , Mutation , Nucleosomes , Phenotype , Stress, Physiological , Terminal Repeat Sequences , Transcriptional Activation
17.
Genome Res ; 24(3): 454-66, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24299735

ABSTRACT

Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.


Subject(s)
Cytosine/metabolism , DNA Methylation , Genome, Human , Inuit/genetics , Nucleosomes/genetics , Animals , Chromosome Mapping , Epigenesis, Genetic , Epigenomics , Evolution, Molecular , Gene Expression , Gene Expression Regulation , Humans , Phylogeny , Promoter Regions, Genetic , Sequence Analysis, DNA
18.
Bioessays ; 37(3): 314-23, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25450156

ABSTRACT

Gene transcription is strictly controlled by the interplay of regulatory events at gene promoters and gene-distal regulatory elements called enhancers. Despite extensive studies of enhancers, we still have a very limited understanding of their mechanisms of action and their restricted spatio-temporal activities. A better understanding would ultimately lead to fundamental insights into the control of gene transcription and the action of regulatory genetic variants involved in disease. Here, I review and discuss pros and cons of state-of-the-art genomics methods to localize and infer the activity of enhancers. Among the different approaches, profiling of enhancer RNAs yields the highest specificity and may be superior in detecting in vivo activity. I discuss their apparent similarities to promoters, which challenge the established view of enhancers and promoters as distinct entities, and present a unifying model of regulatory elements in transcriptional regulation, in which activity, transcriptional output and regulatory function is context specific.


Subject(s)
Enhancer Elements, Genetic , Promoter Regions, Genetic , Animals , Gene Expression Regulation , Humans , Models, Genetic , Transcription Factors/physiology , Transcription Initiation Site , Transcription, Genetic
19.
Blood ; 123(17): e79-89, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24671952

ABSTRACT

In development, epigenetic mechanisms such as DNA methylation have been suggested to provide a cellular memory to maintain multipotency but also stabilize cell fate decisions and direct lineage restriction. In this study, we set out to characterize changes in DNA methylation and gene expression during granulopoiesis using 4 distinct cell populations ranging from the oligopotent common myeloid progenitor stage to terminally differentiated neutrophils. We observed that differentially methylated sites (DMSs) generally show decreased methylation during granulopoiesis. Methylation appears to change at specific differentiation stages and overlap with changes in transcription and activity of key hematopoietic transcription factors. DMSs were preferentially located in areas distal to CpG islands and shores. Also, DMSs were overrepresented in enhancer elements and enriched in enhancers that become active during differentiation. Overall, this study depicts in detail the epigenetic and transcriptional changes that occur during granulopoiesis and supports the role of DNA methylation as a regulatory mechanism in blood cell differentiation.


Subject(s)
DNA Methylation , Enhancer Elements, Genetic , Granulocytes/cytology , Transcriptome , Cell Differentiation , Cell Separation , CpG Islands , Cytosine/metabolism , Epigenesis, Genetic , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Genomics , Humans , Neutrophils/metabolism , Oligonucleotide Array Sequence Analysis , RNA/metabolism , Stem Cells/cytology , Transcription Factors/metabolism
20.
Nucleic Acids Res ; 42(11): 6921-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24771338

ABSTRACT

Nucleosomes play important roles in a cell beyond their basal functionality in chromatin compaction. Their placement affects all steps in transcriptional regulation, from transcription factor (TF) binding to messenger ribonucleic acid (mRNA) synthesis. Careful profiling of their locations and dynamics in response to stimuli is important to further our understanding of transcriptional regulation by the state of chromatin. We measured nucleosome occupancy in human hepatic cells before and after treatment with transforming growth factor beta 1 (TGFß1), using massively parallel sequencing. With a newly developed method, SuMMIt, for precise positioning of nucleosomes we inferred dynamics of the nucleosomal landscape. Distinct nucleosome positioning has previously been described at transcription start site and flanking TF binding sites. We found that the average pattern is present at very few sites and, in case of TF binding, the double peak surrounding the sites is just an artifact of averaging over many loci. We systematically searched for depleted nucleosomes in stimulated cells compared to unstimulated cells and identified 24 318 loci. Depending on genomic annotation, 44-78% of them were over-represented in binding motifs for TFs. Changes in binding affinity were verified for HNF4α by qPCR. Strikingly many of these loci were associated with expression changes, as measured by RNA sequencing.


Subject(s)
Nucleosomes/metabolism , Transforming Growth Factor beta1/pharmacology , Bayes Theorem , Cell Line , Gene Expression Regulation , Hepatocyte Nuclear Factor 4/metabolism , Humans , Nucleosomes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL