Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Chembiochem ; : e202400258, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887142

ABSTRACT

S-adenosyl-l-methionine-dependent methyltransferases (MTs) are involved in the C-methylation of a variety of natural products. The MTs SgvM from Streptomyces griseoviridis and MrsA from Pseudomonas syringae pv. syringae catalyze the methylation of the ß-carbon atom of α-keto acids in the biosynthesis of the antibiotic natural products viridogrisein and 3-methylarginine, respectively. MrsA shows high substrate selectivity for 5-guanidino-2-oxovalerate, while other α-keto acids, such as the SgvM substrates 4-methyl-2-oxovalerate, 2-oxovalerate, and phenylpyruvate, are not accepted. Here we report the crystal structures of SgvM and MrsA in the apo form and bound with substrate or S-adenosyl-l-methionine. By investigating key residues for substrate recognition in the active sites of both enzymes and engineering MrsA by site-directed mutagenesis, the substrate range of MrsA was extended to accept α-keto acid substrates of SgvM with uncharged and lipophilic ß-residues. Our results showcase the transfer of the substrate scope of α-keto acid MTs from different biosynthetic pathways by rational design.

2.
Chembiochem ; 24(9): e202300133, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36942622

ABSTRACT

S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.


Subject(s)
Biomimetics , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Biocatalysis , Alkylation , Methylation , Methyltransferases/metabolism
3.
Chemistry ; 29(46): e202301503, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37235813

ABSTRACT

Chemical modification of small molecules is a key step for the development of pharmaceuticals. S-adenosyl-l-methionine (SAM) analogues are used by methyltransferases (MTs) to transfer alkyl, allyl and benzyl moieties chemo-, stereo- and regioselectively onto nucleophilic substrates, enabling an enzymatic way for specific derivatisation of a wide range of molecules. l-Methionine analogues are required for the synthesis of SAM analogues. Most of these are not commercially available. In nature, O-acetyl-l-homoserine sulfhydrolases (OAHS) catalyse the synthesis of l-methionine from O-acetyl-l-homoserine or l-homocysteine, and methyl mercaptan. Here, we investigated the substrate scope of ScOAHS from Saccharomyces cerevisiae for the production of l-methionine analogues from l-homocysteine and organic thiols. The promiscuous enzyme was used to synthesise nine different l-methionine analogues with modifications on the thioether residue up to a conversion of 75 %. ScOAHS was combined with an established MT dependent three-enzyme alkylation cascade, allowing transfer of in total seven moieties onto two MT substrates. For ethylation, conversion was nearly doubled with the new four-enzyme cascade, indicating a beneficial effect of the in situ production of l-methionine analogues with ScOAHS.


Subject(s)
Methionine , Methyltransferases , Methyltransferases/metabolism , Homoserine , S-Adenosylmethionine/chemistry , Alkylation , Catalysis , Homocysteine
4.
Chembiochem ; 23(18): e202200181, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35901288

ABSTRACT

In the biosynthesis of menaquinone in bacteria, the thiamine diphosphate-dependent enzyme MenD catalyzes the decarboxylative carboligation of α-ketoglutarate and isochorismate to (1R,2S,5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-3-ene-1-carboxylate (SEPHCHC). The regioisomer of SEPHCHC, namely (1R,5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-2-ene-1-carboxylate (iso-SEPHCHC), has been considered as a possible product, however, its existence has been doubtful due to a spontaneous elimination of pyruvate from SEPHCHC to 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC). In this work, the regioisomer iso-SEPHCHC was distinguished from SEPHCHC by liquid chromatography-tandem mass spectrometry. Iso-SEPHCHC was purified and identified by NMR spectroscopy. Just as SEPHCHC remained hidden as a MenD product for more than two decades, its regioisomer iso-SEPHCHC has remained until now.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Cyclohexenes , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Ketoglutaric Acids , Pyruvates , Substrate Specificity , Thiamine Pyrophosphate/metabolism , Vitamin K 2
5.
Chembiochem ; 23(18): e202200212, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35691829

ABSTRACT

In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Methyltransferases/chemistry , S-Adenosylmethionine/chemistry
6.
Angew Chem Int Ed Engl ; 61(32): e202204198, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35638156

ABSTRACT

Methyl-coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2-(S)-methylglutamine. The enzyme responsible for the Cα -methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin-dependent radical SAM enzyme as the glutamine C-methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base-off, His-off conformation and contains a single [4Fe-4S] cluster. The cobalamin cofactor cycles between the methyl-cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5'-deoxyadenosine and S-adenosyl-l-homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C-methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3 -hybridized carbon atoms.


Subject(s)
S-Adenosylmethionine , Vitamin B 12 , Glutamine/metabolism , Methane , Methylation , Methyltransferases/metabolism , Oxidoreductases , S-Adenosylmethionine/chemistry , Vitamin B 12/chemistry
7.
Beilstein J Org Chem ; 18: 1278-1288, 2022.
Article in English | MEDLINE | ID: mdl-36225726

ABSTRACT

Polyphosphate kinases (PPKs) have become popular biocatalysts for nucleotide 5'-triphosphate (NTP) synthesis and regeneration. Two unrelated families are described: PPK1 and PPK2. They are structurally unrelated and use different catalytic mechanisms. PPK1 enzymes prefer the usage of adenosine 5'-triphosphate (ATP) for polyphosphate (polyP) synthesis while PPK2 enzymes favour the reverse reaction. With the emerging use of PPK enzymes in biosynthesis, a deeper understanding of the enzymes and their thermodynamic reaction course is of need, especially in comparison to other kinases. Here, we tested four PPKs from different organisms under the same conditions without any coupling reactions. In comparison to other kinases using phosphate donors with comparably higher phosphate transfer potentials that are characterised by reaction yields close to full conversion, the PPK-catalysed reaction reaches an equilibrium in which about 30% ADP is left. These results were obtained for PPK1 and PPK2 enzymes, and are supported by theoretical data on the basic reaction. At high concentrations of substrate, the different kinetic preferences of PPK1 and PPK2 can be observed. The implications of these results for the application of PPKs in chemical synthesis and as enzymes for ATP regeneration systems are discussed.

8.
Proc Natl Acad Sci U S A ; 115(13): 3350-3355, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531036

ABSTRACT

Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.


Subject(s)
Deinococcus/enzymology , Phosphotransferases (Phosphate Group Acceptor)/chemistry , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Polyphosphates/metabolism , Crystallography, X-Ray , Kinetics , Ligands , Phosphorylation , Protein Conformation , Substrate Specificity
9.
Angew Chem Int Ed Engl ; 60(34): 18673-18679, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34101966

ABSTRACT

The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule.

10.
Nat Prod Rep ; 37(10): 1316-1333, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32582886

ABSTRACT

Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.


Subject(s)
Coenzymes/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Catalysis , Coenzyme A/chemistry , Coenzyme A/metabolism , Coenzymes/chemical synthesis , NADP/chemistry , NADP/metabolism , Nucleosides/metabolism , Phosphoadenosine Phosphosulfate/chemistry , Phosphoadenosine Phosphosulfate/metabolism , Phosphorylation
11.
Chembiochem ; 20(8): 1019-1022, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30549179

ABSTRACT

Polyphosphate kinases (PPKs) are involved in many metabolic processes; enzymes of the second family (PPK2) are responsible for nucleotide synthesis fuelled by the consumption of inorganic polyphosphate. They catalyse the phosphorylation of nucleotides with various numbers of phosphate residues, such as monophosphates or diphosphates. Hence, these enzymes are promising candidates for cofactor regeneration systems. Besides adenosine 5'-triphosphate, PPK2s also catalyse the synthesis of highly phosphorylated nucleotides in vitro, as shown here for adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate. These unusually phosphorylated adenosine 5'-polyphosphates add up to 50 % of the whole adenosine nucleotides in the assay. The two new products were chemically synthesised to serve as standards and compared with the two enzymatically produced compounds by high-performance ion chromatography and 31 P NMR analysis. This study shows that PPK2s are highly suitable for biocatalytic synthesis of different phosphorylated nucleotides.


Subject(s)
Adenosine Monophosphate/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Polyphosphates/metabolism , Adenosine Monophosphate/chemistry , Catalysis , Substrate Specificity
12.
Org Biomol Chem ; 17(8): 2092-2098, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30706936

ABSTRACT

Chorismatases catalyse the cleavage of chorismate, yielding (dihydroxy-)benzoate derivatives, which often constitute starter units for pharmaceutically relevant secondary metabolites. Depending on their products, chorismatases have been classified into three different subfamilies. These can be assigned using a set of amino acid residues in the active site. Here, we describe five new chorismatases, two of them members of a new subfamily, which has been discovered through correlation analysis of homologous protein sequences. The enzymes from the new subfamily produce exclusively 4-hydroxybenzoate, the same compound as produced by the structurally unrelated chorismate lyases. This showcase of convergent evolution is an example of the existence of more than one pathway to central building blocks. In contrast to chorismate lyases, however, chorismatases do not suffer from product inhibition (up to 2 mM 4-HBA), while the remaining kinetic parameters are in the same range; this makes them an interesting alternative for biocatalytic applications.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Chorismic Acid/metabolism , Oxo-Acid-Lyases/metabolism , Parabens/metabolism , Bacteria/chemistry , Bacteria/metabolism , Bacterial Proteins/chemistry , Chorismic Acid/chemistry , Models, Molecular , Oxo-Acid-Lyases/chemistry , Parabens/chemistry , Streptomyces/chemistry , Streptomyces/enzymology , Streptomyces/metabolism , Substrate Specificity
13.
Angew Chem Int Ed Engl ; 56(14): 4033-4036, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28247461

ABSTRACT

S-Adenosylmethionine-dependent methyltransferases (MTs) play a decisive role in the biosynthesis of natural products and in epigenetic processes. MTs catalyze the methylation of heteroatoms and even of carbon atoms, which, in many cases, is a challenging reaction in conventional synthesis. However, C-MTs are often highly substrate-specific. Herein, we show that SgvM from Streptomyces griseoviridis features an extended substrate scope with respect to the nucleophile as well as the electrophile. Aside from its physiological substrate 4-methyl-2-oxovalerate, SgvM catalyzes the (di)methylation of pyruvate, 2-oxobutyrate, 2-oxovalerate, and phenylpyruvate at the ß-carbon atom. Chiral-phase HPLC analysis revealed that the methylation of 2-oxovalerate occurs with R selectivity while the ethylation of 2-oxobutyrate with S-adenosylethionine results in the S enantiomer of 3-methyl-2-oxovalerate. Thus SgvM could be a valuable tool for asymmetric biocatalytic C-alkylation reactions.

14.
Angew Chem Int Ed Engl ; 56(14): 4037-4041, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28170142

ABSTRACT

S-Adenosylmethionine-dependent methyltransferases are versatile tools for the specific alkylation of many compounds, such as pharmaceuticals, but their biocatalytic application is severely limited owing to the lack of a cofactor regeneration system. We report a biomimetic, polyphosphate-based, cyclic cascade for methyltransferases. In addition to the substrate to be methylated, only methionine and polyphosphate have to be added in stoichiometric amounts. The system acts catalytically with respect to the cofactor precursor adenosine in methylation and ethylation reactions of selected substrates, as shown by HPLC analysis. Furthermore, 1 H and 13 C NMR measurements were performed to unequivocally identify methionine as the methyl donor and to gain insight into the selectivity of the reactions. This system constitutes a vital stage in the development of economical and environmentally friendly applications of methyltransferases.

15.
J Am Chem Soc ; 137(34): 11032-7, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26247872

ABSTRACT

Chorismatases are a class of chorismate-converting enzymes involved in the biosynthetic pathways of different natural products, many of them with interesting pharmaceutical characteristics. So far, three subfamilies of chorismatases are described that convert chorismate into different (dihydro-)benzoate derivatives (CH-FkbO, CH-Hyg5, and CH-XanB2). Until now, the detailed enzyme mechanism and the molecular basis for the different reaction products were unknown. Here we show that the CH-FkbO and CH-Hyg5 subfamilies share the same protein fold, but employ fundamentally different reaction mechanisms. While the FkbO reaction is a typical hydrolysis, the Hyg5 reaction proceeds intramolecularly, most likely via an arene oxide intermediate. Two nonconserved active site residues were identified that are responsible for the different reaction mechanisms in CH-FkbO and CH-Hyg5. Further, we propose an additional amino acid residue to be responsible for the discrimination of the CH-XanB2 subfamily, which catalyzes the formation of two different hydroxybenzoate regioisomers, likely in a single active site. A multiple sequence alignment shows that these three crucial amino acid positions are located in conserved motifs and can therefore be used to assign unknown chorismatases to the corresponding subfamily.


Subject(s)
Phosphorus-Oxygen Lyases/metabolism , Models, Molecular , Molecular Structure , Phosphorus-Oxygen Lyases/chemistry , Protein Folding
16.
Chembiochem ; 16(3): 380-6, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25619338

ABSTRACT

Adenosine-5'-triphosphate-dependent enzyme catalysed reactions are widespread in nature. Consequently, the enzymes involved have an intrinsic potential for use in syntheses of high value products. Although regeneration systems for ATP starting from adenosine-5'-diphosphate are available, certain limitations exist for both in vitro and in vivo applications requiring ATP regeneration from adenosine-5'-monophosphate, or adenosine. Following a short overview of the chemical and thermodynamic background, this Minireview focuses on emerging enzymes and methodologies for ATP regeneration. A large range of as yet unexploited reactions will be accessible with new, powerful, multistep ATP regeneration systems that use cheap phosphate donors and provide high longevity, compatibility, and robustness under process conditions. Their potential might go far beyond the direct use of ATP in enzymatic reactions; enzyme discovery, and engineering, as well as immobilisation strategies, will help to realise such systems.


Subject(s)
Adenosine Triphosphate/metabolism , Biocatalysis , Enzymes/chemistry , Enzymes/metabolism , Adenosine Diphosphate/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Phosphates/metabolism , Protein Engineering/methods , Thermodynamics
17.
Chembiochem ; 16(18): 2576-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26437744

ABSTRACT

S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes.


Subject(s)
Catechol O-Methyltransferase/metabolism , Catechols/metabolism , Methionine Adenosyltransferase/metabolism , N-Glycosyl Hydrolases/metabolism , Animals , Archaea/enzymology , Archaea/metabolism , Archaeal Proteins/metabolism , Catechols/chemistry , Chromatography, High Pressure Liquid , Methionine/metabolism , Methylation , Oxygen/chemistry , Oxygen/metabolism , Rats , S-Adenosylmethionine/metabolism , Spectrophotometry , Stereoisomerism
18.
Proc Natl Acad Sci U S A ; 108(12): 4776-81, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383123

ABSTRACT

The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus. Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate.


Subject(s)
Bacterial Proteins , Chorismic Acid/metabolism , Genes, Bacterial/physiology , Immunosuppressive Agents/metabolism , Multigene Family/physiology , Sirolimus/metabolism , Streptomyces , Tacrolimus/analogs & derivatives , Tacrolimus/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Chorismic Acid/chemistry , Immunosuppressive Agents/chemistry , Sirolimus/chemistry , Streptomyces/enzymology , Streptomyces/genetics , Tacrolimus/chemistry
19.
Commun Biol ; 7(1): 380, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38548921

ABSTRACT

S-Adenosyl-L-homocysteine hydrolase (SAHH) reversibly cleaves S-adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine-dependent methylation reactions. The conversion of S-adenosyl-L-homocysteine into adenosine and L-homocysteine plays an important role in the regulation of the methyl cycle. An alternative metabolic route for S-adenosyl-L-methionine regeneration in the extremophiles Methanocaldococcus jannaschii and Thermotoga maritima has been identified, featuring the deamination of S-adenosyl-L-homocysteine to S-inosyl-L-homocysteine. Herein, we report the structural characterisation of different archaeal SAHHs together with a biochemical analysis of various SAHHs from all three domains of life. Homologues deriving from the Euryarchaeota phylum show a higher conversion rate with S-inosyl-L-homocysteine compared to S-adenosyl-L-homocysteine. Crystal structures of SAHH originating from Pyrococcus furiosus in complex with SLH and inosine as ligands, show architectural flexibility in the active site and offer deeper insights into the binding mode of hypoxanthine-containing substrates. Altogether, the findings of our study support the understanding of an alternative metabolic route for S-adenosyl-L-methionine and offer insights into the evolutionary progression and diversification of SAHHs involved in methyl and purine salvage pathways.


Subject(s)
Archaea , S-Adenosylmethionine , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Archaea/metabolism , Adenosine/metabolism , Methionine , Homocysteine
20.
BMC Struct Biol ; 13: 22, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24134203

ABSTRACT

BACKGROUND: Methionine adenosyltransferases catalyse the synthesis of S-adenosylmethionine, a cofactor abundant in all domains of life. In contrast to the enzymes from bacteria and eukarya that show high sequence similarity, methionine adenosyltransferases from archaea diverge on the amino acid sequence level and only few conserved residues are retained. RESULTS: We describe the initial characterisation and the crystal structure of the methionine adenosyltransferase from the hyperthermophilic archaeon Thermococcus kodakarensis. As described for other archaeal methionine adenosyltransferases the enzyme is a dimer in solution and shows high temperature stability. The overall structure is very similar to that of the bacterial and eukaryotic enzymes described, with some additional features that might add to the stability of the enzyme. Compared to bacterial and eukaryotic structures, the active site architecture is largely conserved, with some variation in the substrate/product-binding residues. A flexible loop that was not fully ordered in previous structures without ligands in the active side is clearly visible and forms a helix that leaves an entrance to the active site open. CONCLUSIONS: The similar three-dimensional structures of archaeal and bacterial or eukaryotic methionine adenosyltransferases support that these enzymes share an early common ancestor from which they evolved independently, explaining the low similarity in their amino acid sequences. Furthermore, methionine adenosyltransferase from T. kodakarensis is the first structure without any ligands bound in the active site where the flexible loop covering the entrance to the active site is fully ordered, supporting a mechanism postulated earlier for the methionine adenosyltransferase from E. coli. The structure will serve as a starting point for further mechanistic studies and permit the generation of enzyme variants with different characteristics by rational design.


Subject(s)
Methionine Adenosyltransferase/chemistry , Methionine Adenosyltransferase/metabolism , S-Adenosylmethionine/metabolism , Thermococcus/enzymology , Amino Acid Sequence , Catalytic Domain , Circular Dichroism , Cloning, Molecular , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Methionine Adenosyltransferase/genetics , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Structure, Tertiary , Sequence Alignment , Thermococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL