Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Biol Chem ; 295(41): 14084-14099, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32788215

ABSTRACT

A sterilizing or functional cure for HIV is currently precluded by resting CD4+ T cells that harbor latent but replication-competent provirus. The "shock-and-kill" pharmacological ap-proach aims to reactivate provirus expression in the presence of antiretroviral therapy and target virus-expressing cells for elimination. However, no latency reversal agent (LRA) to date effectively clears viral reservoirs in humans, suggesting a need for new LRAs and LRA combinations. Here, we screened 216 compounds from the pan-African Natural Product Library and identified knipholone anthrone (KA) and its basic building block anthralin (dithranol) as novel LRAs that reverse viral latency at low micromolar concentrations in multiple cell lines. Neither agent's activity depends on protein kinase C; nor do they inhibit class I/II histone deacetylases. However, they are differentially modulated by oxidative stress and metal ions and induce distinct patterns of global gene expression from established LRAs. When applied in combination, both KA and anthralin synergize with LRAs representing multiple functional classes. Finally, KA induces both HIV RNA and protein in primary cells from HIV-infected donors. Taken together, we describe two novel LRAs that enhance the activities of multiple "shock-and-kill" agents, which in turn may inform ongoing LRA combination therapy efforts.


Subject(s)
Anthracenes/pharmacology , Anthralin/pharmacology , HIV Infections/drug therapy , HIV-1/physiology , Virus Latency/drug effects , Drug Evaluation, Preclinical , HIV Infections/metabolism , HIV Infections/pathology , Humans , Jurkat Cells
2.
Molecules ; 25(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599753

ABSTRACT

The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.


Subject(s)
Antiviral Agents/pharmacology , Benzopyrans/pharmacology , Drug Evaluation, Preclinical/methods , Glucosides/pharmacology , Influenza A virus/drug effects , Viral Matrix Proteins/antagonists & inhibitors , Amantadine/chemistry , Amantadine/pharmacology , Animals , Antiviral Agents/chemistry , Dogs , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Histidine/chemistry , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virus Replication/drug effects
3.
BMC Complement Altern Med ; 18(1): 36, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29378558

ABSTRACT

BACKGROUND: Despite the remarkable progress in cancer therapy in recent years, this disease still remains a serious public health concern. The use of natural products has been and continues to be one of the most effective ways to fight malignancies. The cytotoxicity of 14 compounds from African medicinal plants was evaluated in four human carcinoma cell lines and normal fibroblasts. The tested samples included: ß-spinasterol (1), friedelanone (2), 16ß-hydroxylupeol (3), ß-amyrin acetate (4), lupeol acetate (5), sequoyitol (6), rhamnitrin (7), europetin 3-O-rhamnoside (8), thonningiol (9), glyasperin F (10), seputhecarpan B (11), seputhecarpan C (12), seputhecarpan D (13) and rheediaxanthone A (14). METHODS: The neutral red uptake (NR) assay was used to evaluate the cytotoxicity of samples; caspase-Glo assay, flow cytometry for cell cycle analysis and mitochondrial membrane potential (MMP) as well as spectrophotometry to measure levels of reactive oxygen species (ROS) were performed to detect the mode of action of compounds 9 and 13 in MCF-7 breast adenocarcinoma cells. RESULTS: Compounds 3, 9-13 displayed cytotoxic effects against the four tested cancer cell lines with IC50 values below 85 µM. Compounds 9 and 13 had IC50 values below 10 µM in 4/4 and 3/4 tested cell lines respectively. The IC50 values varied from 0.36 µM (against MCF7 cells) to 5.65 µM (towards colon carcinoma DLD-1 cells) for 9, from 9.78 µM (against MCF7 cells) to 67.68 µM (against HepG2 cells) for 13 and 0.18 µM (towards HepG2 cells) to 72 µM (towards Caco-2 cells) for the reference drug, doxorubicin. Compounds 9 and 13 induced cell cycle arrest in Go/G1 whilst doxorubicin induced arrest in G2/M. The two molecules (9 and 13) also induced apoptosis in MCF-7 cells through activation of caspases 3/7 and 9 as well as enhanced ROS production. CONCLUSION: Compounds 9 and 13 are good cytotoxic phytochemicals that should be explored more in future to develop a cytotoxic drug to fight human carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/metabolism , Phytochemicals/pharmacology , Africa , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Phytochemicals/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry
4.
Molecules ; 23(2)2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29443909

ABSTRACT

Sirtuins are nicotinamide adenine dinucleotide (NAD⁺)-dependent class III histone deacetylases, which have been linked to the pathogenesis of numerous diseases, including HIV, metabolic disorders, neurodegeneration and cancer. Docking of the virtual pan-African natural products library (p-ANAPL), followed by in vitro testing, resulted in the identification of two inhibitors of sirtuin 1, 2 and 3 (sirt1-3). Two bichalcones, known as rhuschalcone IV (8) and an analogue of rhuschalcone I (9), previously isolated from the medicinal plant Rhus pyroides, were shown to be active in the in vitro assay. The rhuschalcone I analogue (9) showed the best activity against sirt1, with an IC50 value of 40.8 µM. Based on the docking experiments, suggestions for improving the biological activities of the newly identified hit compounds have been provided.


Subject(s)
Chalcones/chemistry , Histone Deacetylase Inhibitors/chemistry , Sirtuin 1/antagonists & inhibitors , Chalcones/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Protein Binding , Rhus/chemistry , Sirtuin 1/chemistry , User-Computer Interface
5.
J Ethnopharmacol ; 316: 116759, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37301306

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: While access to antiretroviral therapy (ART) continues to improve worldwide, HIV infection and AIDS persist as serious health challenges, particularly in sub-Saharan Africa. Complementary and Alternative Medicines (CAM), as part of indigenous and pluralistic medical systems, are important contributors to primary health care worldwide. However, this knowledge remains relatively undocumented in many parts of sub-Saharan Africa such as the Tutume subdistrict of Central Botswana, where CAM is widely used including potentially for HIV/AIDS and HIV-associated conditions. AIM OF THE STUDY: To explore the extent to which CAM is used by the BaKalanga Peoples of the Tutume subdistrict, we performed an exploratory community-based project to record medicinal plant use from this relatively undocumented region, with a particular focus on species used for management of HIV/AIDS and HIV-associated conditions. MATERIALS AND METHODS: Using the snowball sampling technique, we recruited 13 Traditional Health Practitioners (THPs) and conducted in-depth interviews to explore medicinal plant uses and treatment regimens. Plant specimens were collected and bio-authenticated. RESULTS: We documented 83 plant species used as CAM to treat or manage a variety of conditions including HIV/AIDS, HIV-associated conditions, and other health conditions. Plants from the family Leguminosae were most frequently reported, comprising 21 species (25.3%), followed by 5 from both Euphorbiaceae and Combretaceae families (6.0%). Four plants (4.8%) were used specifically to manage HIV (Lannea edulis (Sond.) Engl. root, Aloe zebrina Baker root, Myrothamnus flabellifolia Welw. whole plant, and Harpagophytum procumbens var. subulobatum (Engl.) tuber), while an additional 7 (8.4%) were reported specifically for treating combinations of HIV-related symptoms. Notably, 25 (30.1%) have not been reported previously as CAM and/or lack reported bioactivity data. CONCLUSIONS: To our knowledge, this is the first detailed ethnobotanical survey of CAM used by the BaKalanga Peoples of the Tutume subdistrict to manage HIV/AIDS and HIV-associated and other health conditions.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Plants, Medicinal , Humans , HIV Infections/drug therapy , Acquired Immunodeficiency Syndrome/drug therapy , Phytotherapy/methods , Botswana , Medicine, African Traditional/methods , Ethnobotany
6.
J Ethnopharmacol ; 296: 115501, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35752260

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Although the available medicines can cure almost all tuberculosis drug-susceptible patients some problems including the emergence of multi-drug resistant and extensively drug-resistant strains press for the need of new anti-TB medicines. Morella salicifolia is a common plant that is widely used in traditional medicine for managing HIV and AIDS-related conditions including tuberculosis but no studies have been done to evaluate its safety and efficacy. AIM OF THE STUDY: This study was designed to investigate the antimycobacterial activity and safety of M. salicifolia extract and its constituents. MATERIAL AND METHODS: Antimycobacterial activity of the crude extract was tested against non-pathogenic mycobacteria including Mycobacterium aurum (MA), Mycobacterium indicus pranii (MIP) and Mycobacterium madagascariense (MM) using the broth microdilution method. Bioassay-guided fractionation was employed to isolate the active compounds. Some of the isolated active compounds were tested for antimycobacterial activity against the standard and selected clinical isolates of M. tuberculosis. Safety of the crude extract was assessed using cytotoxicity assay and oral acute toxicity testing. RESULTS: The crude extract exhibited antimycobacterial activity against all the species used. The study led to isolation of six compounds; four pentacyclic triterpenoids; (3ß)-3-Hydroxyolean-12-en-28-oic acid (Oleanolic acid) (1), (2α,3ß)-2,3-Dihydroxyolean-12-en-28-oic acid (maslinic acid) (2), D-Friedoolean-14-ene-3ß,28-diol (taraxerol) (3), and D-Friedoolean-14-en-3ß-ol (myricadiol) (4), and two diarylheptanoids; (±)-myricanol (5) and myricanone (6). The six compounds exhibited activity against three nonpathogenic mycobacteria species. Compound 2, was the most active, with MICs of 17, 28 and 56 µg/ml against MM, standard a M. tuberculosis strain H37RV and rifampicin resistant M. tuberculosis clinical isolates, respectively. The crude extract did not show toxicity on peripheral blood mononuclear cells and it was safe in mice following acute oral toxicity test. CONCLUSION: The results from this study indicate that some isolated compounds in Morella salicifolia could form potential scaffolds for drug development efforts targeting M. tuberculosis. More studies are needed to further explore the potential of the plant extract and its secondary metabolites in the management of HIV and AIDS-related conditions using in-vivo models.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Myricaceae , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Biological Assay , Leukocytes, Mononuclear , Mice , Microbial Sensitivity Tests , Plant Extracts/toxicity , Tuberculosis/drug therapy
7.
Plants (Basel) ; 11(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365400

ABSTRACT

Schistosomiasis and soil-transmitted helminths are some of the priority neglected tropical diseases (NTDs) targeted for elimination by the World Health Organization (WHO). They are prevalent in Botswana and although Botswana has begun mass drug administration with the hope of eliminating soil-transmitted helminths as a public health problem, the prevalence of schistosomiasis does not meet the threshold required to warrant large-scale interventions. Although Botswana has a modern healthcare system, many people in Botswana rely on traditional medicine to treat worm infections and schistosomiasis. In this study, ten plant species used by traditional health practitioners against worm infections were collected and tested against Ancylostoma ceylanicum (zoonotic hookworm), Heligmosomoides polygyrus (roundworm of rodents), Necator americanus (New World hookworm), Schistosoma mansoni (blood fluke) [adult and newly transformed schistosomula (NTS)], Strongyloides ratti (threadworm) and Trichuris muris (nematode parasite of mice) in vitro. Extracts of two plants, Laphangium luteoalbum and Commiphora pyaracanthoides, displayed promising anthelmintic activity against NTS and adult S. mansoni, respectively. L. luteoalbum displayed 85.4% activity at 1 µg/mL against NTS, while C. pyracanthoides displayed 78.5% activity against adult S. mansoni at 10 µg/mL.

8.
Biomolecules ; 11(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34944537

ABSTRACT

Ozoroa insignis Del. is an ethnobotanical plant widely used in traditional medicine for various ailments, including schistosomiasis, tapeworm, and hookworm infections. From the so far not investigated fruits of Ozoroa insignis, the anthelmintic principles could be isolated through bioassay-guided isolation using Caenorhabditis elegans and identified by NMR spectroscopic analysis and mass spectrometric studies. Isolated 6-[8(Z)-pentadecenyl] anacardic (1), 6-[10(Z)-heptadecenyl] anacardic acid (2), and 3-[7(Z)-pentadecenyl] phenol (3) were evaluated against the 5 parasitic organisms Schistosoma mansoni (adult and newly transformed schistosomula), Strongyloides ratti, Heligmosomoides polygyrus, Necator americanus, and Ancylostoma ceylanicum, which mainly infect humans and other mammals. Compounds 1-3 showed good activity against Schistosoma mansoni, with compound 1 showing the best activity against newly transformed schistosomula with 50% activity at 1µM. The isolated compounds were also evaluated for their cytotoxic properties against PC-3 (human prostate adenocarcinoma) and HT-29 (human colorectal adenocarcinoma) cell lines, whereby compounds 2 and 3 showed antiproliferative activity in both cancer cell lines, while compound 1 exhibited antiproliferative activity only on PC-3 cells. With an IC50 value of 43.2 µM, compound 3 was found to be the most active of the 3 investigated compounds.


Subject(s)
Anacardiaceae/chemistry , Anthelmintics/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Caenorhabditis elegans/growth & development , Plant Extracts/isolation & purification , Ancylostoma/drug effects , Ancylostoma/growth & development , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Caenorhabditis elegans/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Fruit/chemistry , HT29 Cells , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Necator americanus/drug effects , Necator americanus/growth & development , Nematospiroides dubius/drug effects , Nematospiroides dubius/growth & development , PC-3 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/growth & development , Strongyloides ratti/drug effects , Strongyloides ratti/growth & development
9.
Biochem Pharmacol ; 186: 114462, 2021 04.
Article in English | MEDLINE | ID: mdl-33577894

ABSTRACT

While combination antiretroviral therapy (cART) durably suppresses HIV replication, virus persists in CD4+ T-cells that harbor latent but spontaneously inducible and replication-competent provirus. One strategy to inactivate these viral reservoirs involves the use of agents that continue to reinforce HIV latency even after their withdrawal. To identify new chemical leads with such properties, we investigated a series of naturally-occurring flavones (chrysin, apigenin, luteolin, and luteolin-7-glucoside (L7G)) and functionally-related cyclin dependent kinase 9 (CDK9) inhibitors (flavopiridol and atuveciclib) which are reported or presumed to suppress HIV replication in vitro. We found that, while all compounds inhibit provirus expression induced by latency-reversing agents in vitro, only aglycone flavonoids (chrysin, apigenin, luteolin, flavopiridol) and atuveciclib, but not the glycosylated flavonoid L7G, inhibit spontaneous latency reversal. Aglycone flavonoids and atuveciclib, but not L7G, also inhibit CDK9 and the HIV Tat protein. Aglycone flavonoids do not reinforce HIV latency following their in vitro withdrawal, which corresponds with their ability to also inhibit class I/II histone deacetylases (HDAC), a well-established mechanism of latency reversal. In contrast, atuveciclib and flavopiridol, which exhibit little or no HDAC inhibition, continue to reinforce latency for 9 to 14+ days, respectively, following their withdrawal in vitro. Finally, we show that flavopiridol also inhibits spontaneous ex vivo viral RNA production in CD4+ T cells from donors with HIV. These results implicate CDK9 inhibition (in the absence of HDAC inhibition) as a potentially favorable property in the search for compounds that durably reinforce HIV latency.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Flavonoids/pharmacology , HIV-1/drug effects , Histone Deacetylase Inhibitors/pharmacology , Virus Latency/drug effects , tat Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cyclin-Dependent Kinase 9/metabolism , Dose-Response Relationship, Drug , Flavonoids/therapeutic use , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/enzymology , HIV-1/enzymology , Histone Deacetylases/metabolism , Humans , Jurkat Cells , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/enzymology , Virus Latency/physiology , tat Gene Products, Human Immunodeficiency Virus/metabolism
10.
Bioorg Med Chem ; 18(7): 2464-73, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20304658

ABSTRACT

The total synthesis of a potent antiplasmodial natural bichalcone, rhuschalcone VI, is described starting from simple and available resorcinol and 4-hydroxybenzaldehyde. Key steps include the solvent-free Aldol syntheses of chalcones, and the successful application of the Suzuki-Miyaura coupling reaction in the synthesis of bichalcones. The present work constitutes a general method for the rapid syntheses of a number of bichalcones related to rhuschalcone VI. Some of the bichalcones showed moderate antiprotozoal activities against Bodo caudatus, a preliminary screening system for antitrypanosomal activities, most of them with little or no cytotoxicity.


Subject(s)
Antineoplastic Agents, Phytogenic/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Chalcone/analogs & derivatives , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Chalcone/chemical synthesis , Chalcone/pharmacology , Indicators and Reagents , Leishmania/drug effects , Lethal Dose 50 , Magnetic Resonance Spectroscopy , Plant Bark/chemistry , Rhus/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects
11.
J Pharm Biomed Anal ; 174: 277-285, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31185339

ABSTRACT

Knipholone (1) and knipholone anthrone (2), isolated from the Ethiopian medicinal plant Kniphofia foliosa Hochst. are two phenyl anthraquinone derivatives, a compound class known for biological activity. In the present study, we describe the activity of both 1 and 2 in several biological assays including cytotoxicity against four human cell lines (Jurkat, HEK293, SH-SY5Y and HT-29), antiplasmodial activity against Plasmodium falciparum 3D7 strain, anthelmintic activity against the model organism Caenorhabditis elegans, antibacterial activity against Aliivibrio fischeri and Mycobacterium tuberculosis and anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs) infected with HIV-1c. In parallel, we investigated the stability of knipholone (2) in solution and in culture media. Compound 1 displays strong cytotoxicity against Jurkat, HEK293 and SH-SY5Y cells with growth inhibition ranging from approximately 62-95% when added to cells at 50 µM, whereas KA (2) exhibits weak to strong activity with 26, 48 and 70% inhibition of cell growth, respectively. Both 1 and 2 possess significant antiplasmodial activity against Plasmodium falciparum 3D7 strain with IC50 values of 1.9 and 0.7 µM, respectively. These results complement previously reported data on the cytotoxicity and antiplasmodial activity of 1 and 2. Furthermore, compound 2 showed HIV-1c replication inhibition (growth inhibition higher than 60% at tested concentrations 0.5, 5, 15 and 50 µg/ml and an EC50 value of 4.3 µM) associated with cytotoxicity against uninfected PBMCs. The stability study based on preincubation, HPLC and APCI-MS (atmospheric-pressure chemical ionization mass spectrometry) analysis indicates that compound 2 is unstable in culture media and readily oxidizes to form compound 1. Therefore, the biological activity attributed to 2 might be influenced by its degradation products in media including 1 and other possible dimers. Hence, bioactivity results previously reported from this compound should be taken with caution and checked if they differ from those of its degradation products. To the best of our knowledge, this is the first report on the anti-HIV activity and stability analysis of compound 2.


Subject(s)
Anthracenes/analysis , Anthracenes/pharmacology , Anthraquinones/pharmacology , Anti-HIV Agents/pharmacology , Leukocytes, Mononuclear/drug effects , Animals , Anthelmintics/pharmacology , Anti-Bacterial Agents/pharmacology , Antimalarials/pharmacology , Biological Assay , Caenorhabditis elegans/drug effects , Cell Line, Tumor , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Jurkat Cells , Liliaceae/chemistry , Molecular Structure , Mycobacterium tuberculosis , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects
12.
OMICS ; 22(6): 375-391, 2018 06.
Article in English | MEDLINE | ID: mdl-29927715

ABSTRACT

While drugs remain the cornerstone of medicine, herbal medicine is an important comedication worldwide. Thus, precision medicine ought to face this clinical reality and develop "companion diagnostics" for drugs as well as herbal medicines. Yet, many are in denial with respect to the extent of use of traditional/herbal medicines, overlooking that a considerable number of contemporary therapeutic drugs trace their discovery from herbal medicines. This expert review underscores that absent such appropriate attention on both classical drug therapy and herbal medicines, precision medicine biomarkers will likely not stand the full test of clinical practice while patients continue to use both drugs and herbal medicines and, yet the biomarker research and applications focus only (or mostly) on drug therapy. This asymmetry in biomarker innovation strategy needs urgent attention from a wide range of innovation actors worldwide, including governments, research funders, scientists, community leaders, civil society organizations, herbal, pharmaceutical, and insurance industries, policymakers, and social/political scientists. We discuss the various dimensions of a future convergence map between herbal and conventional medicine, and conclude with a set of concrete strategies on how best to integrate biomarker research in a realm of both herbal and drug treatment. Africa, by virtue of its vast experience and exposure in herbal medicine and a "pregnant" life sciences innovation ecosystem, could play a game-changing role for the "birth" of biomarker-informed personalized herbal medicine in the near future. At this critical juncture when precision medicine initiatives are being rolled out worldwide, precision/personalized herbal medicine is both timely and essential for modern therapeutics, not to mention biomarker innovations that stand the test of real-life practices and implementation in the clinic and society.


Subject(s)
Biomarkers/analysis , Herbal Medicine/methods , Humans , Precision Medicine/methods
13.
Phytomedicine ; 48: 112-119, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30195869

ABSTRACT

INTRODUCTION: Resistance of cancer cells is a serious impediment to chemotherapy and several phytochemicals are active against multi-drug resistant (MDR) phenotypes. The cytotoxicity of five naturally occurring compounds: betulin (1), mundulea lactone (2), seputhecarpan A (3), seputheisoflavone (4) and epunctanone (5) was evaluated on a panel of 9 cancer cell lines including various sensitive and drug-resistant cell lines. The modes of action of compound 5 were further investigated. METHODS: The resazurin reduction assay was used to evaluate cytotoxicity of samples and ferroptotic cell death induced by compound 5; caspase-Glo assay was used to detect the activation of caspases in CCRF-CEM leukemia cells treated with compound 5. Flow cytometry was used for cell cycle analysis in CCRF-CEM cells treated with compound 5, as well as detection of apoptotic cells by annexin V/PI staining, analysis of mitochondrial membrane potential (MMP) and measurement of reactive oxygen species (ROS). RESULTS: Compounds 1-5 displayed cytotoxic effects in the 9 studied cancer cell lines with IC50 values below 70 µM. The IC50 values varied from 8.20 µM (in HCT116 (p53-/-) colon cancer cells) to 35.10 µM (against HepG2 hepatocarcinoma cells) for 1, from 8.84 µM (in CEM/ADR5000 leukemia cells) to 48.99 µM (in MDA-MB-231 breast adenocarcinoma cells) for 2, from 12.17 µM (in CEM/ADR5000 cells) to 65.08 µM (in MDA-MB-231 cells) for 3, from 23.80 µM (in U87MG.ΔEGFR glioblastoma cells) to 68.66 µM (in HCT116 (p53-/-) cells) for 4, from 4.84 µM (in HCT116 (p53-/-) cells) to 13.12 µM (in HepG2 cells) for 5 and from 0.02 µM (against CCRF-CEM cells) to 122.96 µM (in CEM/ADR5000 cells) for doxorubicin. Compound 5 induced apoptosis in CCRF-CEM cells through alteration of MMP and increase in ROS production. In addition to apoptosis, ferroptosis was also identified as another mode of cell death induced by epunctanone. CONCLUSIONS: Compounds 1-5 are valuable cytotoxic compounds that could be used to combat MDR cancer cells. Benzophenoe 5 is the most active molecule and deserve more investigations to develop new anticancer drugs.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Fabaceae/chemistry , Garcinia/chemistry , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Reactive Oxygen Species/metabolism
14.
Comput Biol Chem ; 72: 136-149, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29277258

ABSTRACT

This paper describes an analysis of the diversity and chemical toxicity assessment of three chemical libraries of compounds from African flora (the p-ANAPL, AfroMalariaDb, and Afro-HIV), respectively containing compounds exhibiting activities against diverse diseases, malaria and HIV. The diversity of the three data sets was done by comparison of the three most important principal components computed from standard molecular descriptors. This was also done by a study of the most common substructures (MCSS keys). Meanwhile, the in silico toxicity predictions were done through the identification of chemical structural alerts using Lhasa's knowledge based Derek system. The results show that the libraries occupy different chemical space and that only an insignificant part of the respective libraries could exhibit toxicities beyond acceptable limits. The predicted toxicities end points for compounds which were predicted to "plausible" were further discussed in the light of available experimental data in the literature. Toxicity predictions are in agreement when using a machine learning approach that employs graph-based structural signatures. The current study sheds further light towards the use of the studied chemical libraries for virtual screening purposes.


Subject(s)
Anti-HIV Agents/toxicity , Antimalarials/toxicity , Small Molecule Libraries/toxicity , Africa , Anti-HIV Agents/chemistry , Antimalarials/chemistry , Computer Simulation , Datasets as Topic , Humans , Machine Learning , Maximum Tolerated Dose , Models, Molecular , Molecular Structure , Mutagens/chemistry , Mutagens/toxicity , Principal Component Analysis , Small Molecule Libraries/chemistry
15.
J Ethnopharmacol ; 211: 267-277, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-28970153

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Current HIV therapies do not act on latent cellular HIV reservoirs; hence they are not curative. While experimental latency reversal agents (LRAs) can promote HIV expression in these cells, thereby exposing them to immune recognition, existing LRAs exhibit limited clinical efficacy and high toxicity. We previously described a traditional 3-step medicinal plant regimen used for HIV/AIDS management in Northern Botswana that inhibits HIV replication in vitro. Here we describe use of one component of the regimen that additionally contains novel phorbol esters possessing HIV latency-reversal properties. AIM OF THE STUDY: We sought to document experiences of traditional medicine users, assess the ability of traditional medicine components to reverse HIV latency in vitro, and identify pure compounds that conferred these activities. MATERIALS AND METHODS: Experiences of two HIV-positive traditional medicine users (patients) were documented using qualitative interview techniques. Latency reversal activity was assessed using a cell-based model (J-Lat, clone 9.2). Crude plant extracts were fractionated by open column chromatography and reverse-phase HPLC. Compound structures were elucidated using NMR spectroscopy and mass spectrometry. RESULTS: Patients using the 3-step regimen reported improved health over several years despite no reported use of standard HIV therapies. Crude extracts from Croton megalobotrys Müll Arg. ("Mukungulu"), the third component of the 3-step regimen, induced HIV expression in J-lat cells to levels comparable to the known LRA prostratin. Co-incubation with known LRAs and pharmacological inhibitors indicated that the active agent(s) in C. megalobotrys were likely to be protein kinase C (PKC) activator(s). Consistent with these results, two novel phorbol esters (Namushen 1 and 2) were isolated as abundant components of C. megalobotrys and were sufficient to confer HIV latency reversal in vitro. CONCLUSION: We have identified novel LRAs of the phorbol ester class from a medicinal plant used in HIV/AIDS management. These data, combined with self-reported health effects and previously-described in vitro anti-HIV activities of this traditional 3-step regimen, support the utility of longitudinal observational studies of patients undergoing this regimen to quantify its effects on plasma viral loads and HIV reservoir size in vivo.


Subject(s)
Anti-HIV Agents/therapeutic use , Croton , HIV Infections/drug therapy , Phorbol Esters/pharmacology , Virus Latency/drug effects , Cell Line , HIV-1/drug effects , Humans , Male , Medicine, Traditional , Middle Aged , Proviruses/drug effects
16.
Chem Cent J ; 10: 58, 2016.
Article in English | MEDLINE | ID: mdl-28316643

ABSTRACT

BACKGROUND: Ptycholobium is a genus related to Tephrosia which comprises only three species. Compared to Tephrosia, which has been phytochemically and pharmacologically studied, Ptycholobium species have only few or no reports on their chemical constituents. Moreover, no studies on the cytotoxic activities of its secondary metabolites have been previously documented. RESULTS: From the non polar fractions of the roots bark of Ptycholobium contortum (syn Tephrosia contorta), two new pterocarpans: seputhecarpan C 1 and seputhecarpan D 2 and a new pyrone derivative, ptycholopyrone A 3 were isolated. Alongside, five known compounds identified as 3-α,α-dimethylallyl-4-methoxy-6-styryl-α-pyrone or mundulea lactone 4, glyasperin F 5, seputhecarpan A 6, seputheisoflavone 7 and 5-O-methyl-myo-inositol or sequoyitol 8 were also obtained. Their structures were established by the mean means of spectroscopic data in conjunction to those reported in literature. The NMR assignment of the major compound mundulea lactone 4 is revised in this paper. In addition, the cytotoxicity of the isolated metabolites was evaluated on two lung cancer cell lines A549 and SPC212. 8 was not active while compounds 1, 2, 4-7 displayed antiproliferative effects against the two carcinoma cell lines with IC50 values below 75 µM. IC50 values below 10 µM were obtained for 4, 6 and 7 on SPC212 cells. CONCLUSION: Based on the obtained results, Ptycholobium contortum turns to be a rich source of phenolic metabolites among them some bearing prenyl moieties. This study reports for the first time the isolation of pyrone derivatives 3 and 4 from Ptycholobium genus. The cytotoxicity observed for the isolate is also reported for the first time and shows that 4, 6 and 7 could be chemically explored in order to develop a hit candidate against lung cancer. Graphical abstractTwo new pterocarpans and a new pyrone derivative with cytotoxic activities from ptycholobium contortum (N.E.Br.) Brummitt (Leguminosae): revised NMR assignment of mundulea lactone.

17.
J Ethnopharmacol ; 191: 331-340, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27350006

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Human Immunodeficiency Virus (HIV) strains resistant to licensed anti-retroviral drugs (ARVs) continue to emerge. On the African continent, uneven access to ARVs combined with occurrence of side-effects after prolonged ARV therapy have led to searches for traditional medicines as alternative or complementary remedies to conventional HIV/AIDS management. AIM OF THE STUDY: Here we characterize a specific three-step traditional HIV/AIDS treatment regimen consisting of Cassia sieberiana root, Vitex doniana root, and Croton megalobotrys bark by combining qualitative interviews of traditional medical knowledge users in Botswana with in vitro HIV replication studies. MATERIALS AND METHODS: Crude extracts from a total of seven medicinal plants were tested for in vitro cytotoxicity and inhibition of wild-type (NL4.3) and ARV-resistant HIV-1 replication in an immortalized GFP-reporter CD4+ T-cell line. RESULTS: C. sieberiana root, V. doniana root, and C. megalobotrys bark extracts inhibited HIV-1NL4.3 replication with dose-dependence and without concomitant cytotoxicity. C. sieberiana and V. doniana extracts inhibited HIV-1 replication by 50% at 84.8µg/mL and at 25µg/mL, respectively, while C. megalobotrys extracts inhibited HIV-1 replication by a maximum of 45% at concentrations as low as 0.05µg/mL. Extracts did not interfere with antiviral activities of licensed ARVs when applied in combination and exhibited comparable efficacies against viruses harboring major resistance mutations to licensed protease, reverse-transcriptase, or integrase inhibitors. CONCLUSIONS: We report for the first time a three-step traditional HIV/AIDS regimen, used alone or in combination with standard ARV regimens, where each step exhibited more potent ability to inhibit HIV replication in vitro. Our observations support the "reverse pharmacology" model where documented clinical experiences are used to identify natural products of therapeutic value.


Subject(s)
Anti-HIV Agents/pharmacology , Cassia/chemistry , Croton/chemistry , HIV-1/drug effects , Medicine, African Traditional , Plant Extracts/pharmacology , Virus Replication/drug effects , Vitex/chemistry , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/toxicity , Black People , Botswana , Cassia/toxicity , Cell Line , Croton/toxicity , Cultural Characteristics , Dose-Response Relationship, Drug , Drug Resistance, Viral , Drug Therapy, Combination , Ethnobotany , Ethnopharmacology , HIV-1/genetics , HIV-1/growth & development , Health Knowledge, Attitudes, Practice/ethnology , Humans , Interviews as Topic , Phytotherapy , Plant Bark/chemistry , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plant Roots/chemistry , Plants, Medicinal , Transfection , Vitex/toxicity
18.
PLoS One ; 10(4): e0121099, 2015.
Article in English | MEDLINE | ID: mdl-25830320

ABSTRACT

The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world.


Subject(s)
Aporphines/pharmacology , Biological Products/chemistry , HIV-1/drug effects , Proanthocyanidins/pharmacology , Aporphines/chemistry , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/virology , Cell Line , Drug Resistance, Viral , Guanidines/pharmacology , HIV-1/physiology , Hepacivirus/drug effects , Hepacivirus/physiology , Human Immunodeficiency Virus Proteins/antagonists & inhibitors , Human Immunodeficiency Virus Proteins/metabolism , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/virology , Molecular Docking Simulation , Proanthocyanidins/chemistry , Pyrazoles/pharmacology , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication/drug effects
19.
PLoS One ; 9(3): e90655, 2014.
Article in English | MEDLINE | ID: mdl-24599120

ABSTRACT

BACKGROUND: Natural products play a key role in drug discovery programs, both serving as drugs and as templates for the synthesis of drugs, even though the quantities and availabilities of samples for screening are often limitted. EXPERIMENTAL APPROACH: A current collection of physical samples of > 500 compound derived from African medicinal plants aimed at screening for drug discovery has been made by donations from several researchers from across the continent to be directly available for drug discovery programs. A virtual library of 3D structures of compounds has been generated and Lipinski's "Rule of Five" has been used to evaluate likely oral availability of the samples. RESULTS: A majority of the compound samples are made of flavonoids and about two thirds (2/3) are compliant to the "Rule of Five". The pharmacological profiles of thirty six (36) selected compounds in the collection have been discussed. CONCLUSIONS AND IMPLICATIONS: The p-ANAPL library is the largest physical collection of natural products derived from African medicinal plants directly available for screening purposes. The virtual library is also available and could be employed in virtual screening campaigns.


Subject(s)
Biological Products/analysis , Drug Discovery , Plants, Medicinal/chemistry , Small Molecule Libraries/analysis , User-Computer Interface , Africa , Hydrogen Bonding
20.
Curr Drug Metab ; 14(4): 392-413, 2013 May.
Article in English | MEDLINE | ID: mdl-23330927

ABSTRACT

Polyphenols are a versatile class of compounds that represent secondary metabolites from higher plants and which are abundantly present in the human diet. Epidemiological data suggest protective effects of polyhenols in relation to cancer, cardiovascular diseases, diabetes, infectious diseases and age-related conditions. HIV/AIDS remains prevalent in many parts of the world as acute infection and as anti-retroviral drug (ARV)-managed chronic disease. Due to the nature of the human immune deficiency virus (HIV) and an increased use of ARVs many drug-resistant HIV strains have emerged and continue to do so. This makes it impossible to rely on one standard drug treatment regime. This review summarizes anti- HIV activities of polyphenols. It highlights the diversity of modes of action by which polyphenols - according to their respective compound classes - exert their activities. Additionally, this review discusses polyphenols as multi-target anti-HIV agents and provides the context of in-vivo and clinical data. Based on the presented data, a three-pronged approach for further anti-HIV drug discovery is suggested applying methods of combinatorial medicinal chemistry on the diverse and sometimes unique scaffolds of polyphenols. The latter being selected according to the approach of 'reverse pharmacology' as a creative way to place safety and other clinical consideration at the beginning of the drug discovery- and development process.


Subject(s)
Anti-HIV Agents/therapeutic use , Flavonoids/therapeutic use , HIV Infections/drug therapy , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Drug Interactions , Flavonoids/chemistry , Flavonoids/pharmacology , HIV Infections/metabolism , HIV-1/drug effects , HIV-1/physiology , Humans , Phenols/pharmacology , Tannins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL