Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 356(3): e2200459, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36417559

ABSTRACT

A series of 1H-1,2,3-triazole-4H-chromene-D-glucose hybrid compounds 7a-w were synthesized using click chemistry of 2-amino-7-propargyloxy-4H-chromene-3-carbonitriles 5a-w. CuNPs@montmorillonite was used as a catalyst in the presence of DIPEA as an additive for this chemistry. All synthesized 1H-1,2,3-triazoles were examined for in vitro inhibition against Mycobacterium tuberculosis protein tyrosine phosphatase B (MtbPtpB). Nine 1H-1,2,3-triazoles, including 7c-e, 7h, 7i, and 7r-t, displayed remarkable inhibitory activity against MtbPtpB with IC50 < 10 µM; compound 7t exhibited the most potent inhibition in vitro with an IC50 value of 0.61 µM. Kinetic studies of the three most active compounds, 7c,h,t, showed their competitive inhibition toward the MtbPtpB enzyme. Induced-fit docking and MM-GBSA studies on the enzyme (PDB: 2OZ5) revealed that the most active compound 7t was more effective against MtbPtpB. Residues Arg64, Arg136, Ash165, Arg166, and Arg63 in the binding pocket were identified as potential ligand-binding hot-spot residues for ligand 7t. The binding free energy calculation by the MM-GBSA approach for ligand 7t indicated that Coulomb, lipophilic, and van der Waals energy terms are major contributors to the inhibitor binding. Furthermore, the stability of the ligand-protein complex and the structural insights into the mode of binding were confirmed by 300-ns molecular dynamics simulation of 7t/2OZ5.


Subject(s)
Mycobacterium tuberculosis , Glucose , Structure-Activity Relationship , Triazoles/pharmacology , Triazoles/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemistry , Kinetics , Ligands , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/pharmacology , Molecular Docking Simulation
2.
Chem Biodivers ; 19(12): e202200680, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36408921

ABSTRACT

In this study, the click chemistry between N-propargyl derivatives of substituted 4H-pyrano[2,3-d]pyrimidines and tetra-O-acetyl-α-d-glucopyranosyl azide carried out under catalytic conditions using catalyst CuI@Montmorillonite and additive N,N-diisopropylethylamine (DIPEA). The yields of obtained hybrid compounds having 4H-pyrano[2,3-d]pyrimidine connected to 1H-1,2,3-triazole rings were about 85-94 %. All these synthesized hybrid compounds were examined for in vitro α-amylase (with IC50 values in the range of 103.63±1.13 µM to 295.45±1.11 µM) and α-glucosidase (with IC50 values in the range of 45.63±1.14 µM to 184.52±1.15) inhibitory activity. Amongst this series, ethyl ester 8m showed the best inhibitory activity against α-amylase with IC50 of 103.63±1.13 µM, while ethyl ester 8t exhibited the highest activity against α-glucosidase with IC50 of 45.63±1.14 µM. The kinetics of the inhibition of compound 8t showed the competitive α-glucosidase inhibitor property of this compound. Furthermore, the most potent compounds had any cytotoxicity against human normal cells. Induced fit docking and molecular dynamics simulation calculations indicated that the inhibition potential compounds 8m and 8t had the active interactions with the residues in receptors of corresponding tested enzymes. The calculated binding free energy from MM-GBSA approach showed that the major energy components contributed to the active binding of these studied inhibitors, including Coulomb, lipophilic and van der Waals energy. Further, 300 ns MD simulation showed that studied ligand-protein complexes were stable and indicated the structural observations into mode of binding in these complexes.


Subject(s)
Glucose , alpha-Glucosidases , Humans , alpha-Glucosidases/metabolism , Glucosidases/metabolism , alpha-Amylases/metabolism , Structure-Activity Relationship , Amylases/metabolism , Triazoles/chemistry , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Molecular Structure
3.
RSC Med Chem ; 14(6): 1114-1130, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360390

ABSTRACT

Some substituted glucose-conjugated thioureas containing 1,3-thiazole ring, 4a-h, were synthesized by the reaction of the corresponding substituted 2-amino-4-phenyl-1,3-thiazoles 2a-h with 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isocyanate. The antibacterial and antifungal activities of these thiazole-containing thioureas were estimated using a minimum inhibitory concentration protocol. Among these compounds, 4c, 4g, and 4h were better inhibitors with MIC = 0.78-3.125 µg mL-1. These three compounds were also tested for their ability to inhibit S. aureus enzymes, including DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase, and compound 4h was found to be a strong inhibitor with IC50 = 1.25 ± 0.12, 67.28 ± 1.21, and 0.13 ± 0.05 µM, respectively. Induced-fit docking and MM-GBSA calculations were performed to observe the binding efficiencies and steric interactions of these compounds. The obtained results showed that compound 4h is compatible with the active site of S. aureus DNA gyrase 2XCS with four H-bond interactions with residues Ala1118, Met1121, and F:DC11 and also three interactions with F:DG10 (two interactions) and F:DC11 (one interaction). Molecular dynamics simulation in a water solvent system showed that ligand 4h had active interactions with enzyme 2XCS through residues Ala1083, Glu1088, Ala1118, Gly1117, and Met1121.

SELECTION OF CITATIONS
SEARCH DETAIL