Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Omega ; 9(1): 178-195, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222624

ABSTRACT

Polyvinylidene fluoride (PVDF)-expanded graphite (ExGr) nanocomposites have been prepared by solution blending and melt processing methods. In the presence of polyvinylpyrrolidone (PVP), enhanced dispersion of graphite nanosheets (GNSs) in the PVDF matrix, as suggested by field emission scanning electron microscopy analysis, results in very low electrical percolation threshold (0.3 wt % ExGr). X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry (DSC) analyses confirm the coexistence of electroactive gamma and nonpolar alpha phases. Wrapping of PVP chains around GNSs reduces the crystallinity in PVDF-ExGr nanocomposites in comparison to that in neat PVDF films, as evidenced by DSC analysis. Thermogravimetric analysis confirms enhanced thermal stability of PVDF-ExGr nanocomposites above 500 °C mainly attributed to the PVP-assisted dispersion of GNSs. The water contact angle of solution-blended PVDF-ExGr nanocomposite films increases with and without PVP in comparison to that of the neat PVDF film. Compression-molded PVDF-ExGr nanocomposites also exhibit electroactive gamma and nonpolar alpha phases of PVDF with reduction in electrical conductivity compared to solvent-cast films.

2.
Carbohydr Polym ; 291: 119602, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698405

ABSTRACT

In this study, sugarcane bagasse was pretreated with acid-catalyzed alcohols, i.e., ethanol (AE), ethylene glycol (AEG) and glycerol (AG) to prepare pulps for producing lignin-containing cellulose nanofibrils (LCNF) with tailored properties, such as hydrophilicity/hydrophobicity and dispersion stability. The results showed that AG-LCNF had the highest lignin content of 16% but relatively low hydrophobicity while AE-LCNF had a low lignin content of 11% but the highest hydrophobicity. LCNF diameter distribution, crystallinity, zeta potentials and thermal stability were also determined to understand the effects of pretreatment solvent. NMR analyses revealed that alcohols modified lignin at α-position by etherification and γ-position by esterification of aliphatic chains, subsequently affecting lignin oxidation by TEMPO in the LCNF production processes, LCNF properties and LCNF dispersion in different solvents. This study provided fundamental information in the design and tailored production of LCNF for various applications, such as manufacturing polymer composites and Pickering emulsions.


Subject(s)
Cellulose , Saccharum , Catalysis , Cellulose/chemistry , Edible Grain , Ethanol , Hydrolysis , Lignin/chemistry , Saccharum/chemistry
3.
ACS Omega ; 3(11): 15933-15942, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30556019

ABSTRACT

The isolation of nanocellulose from lignocellulosic biomass, with desirable surface chemistry and morphology, has gained extensive scientific attention for various applications including polymer nanocomposite reinforcement. Additionally, environmental and economic concerns have driven researchers to explore viable alternatives to current isolation approaches, employing chemicals with reduced environmental impact. To address these issues, in this study, we have tuned the amphiphilic behavior of cellulose nanofibers (CNFs) by employing controlled alkali treatment, instead of in combination with expensive, environmentally unsustainable conventional approaches. Microscopic and spectroscopic analysis demonstrated that this approach is capable of tuning composition and interfacial tension of CNFs through a careful control of the quantity of residual lignin and hemicellulose. To elucidate the performance of CNF as an efficient reinforcing nanofiller in hydrophobic polymer matrices, prevulcanized natural rubber (NR) latex was employed as a suitable host polymer. CNF/NR nanocomposites with different CNF loading levels (0.1-1 wt % CNF) were prepared by a casting method. It was found that the incorporation of 0.1 wt % CNF treated with a 0.5 w/v % sodium hydroxide solution led to the highest latex reinforcement efficiency, with an enhancement in tensile stress and toughness of 16% to 42 MPa and 9% to 197 MJ m-3, respectively. This property profile offers a potential application for the high-performance medical devices such as condoms and gloves.

SELECTION OF CITATIONS
SEARCH DETAIL